-\textcolor{green}{The MuDilLCO protocol is declined into four versions: MuDiLCO-1, MuDiLCO-3, MuDiLCO-5,
-and MuDiLCO-7, corresponding respectively to $T=1,3,5,7$ ($T$ the number of rounds in one sensing period). Since the time resolution may be prohibitif when the size of the problem increases, a time limit treshold has been fixed to solve large instances. In these cases, the solver returns the best solution found, which is not necessary the optimal solution.
- Table \ref{tl} shows time limit values. These time limit treshold have been set empirically. The basic idea consists in considering the average execution time to solve the integer programs to optimality, then by dividing this average time by three to set the threshold value. After that, this treshold value is increased if necessary such that the solver is able to deliver a feasible solution within the time limit. In fact, selecting the optimal values for the time limits will be investigated in future. In Table \ref{tl}, "NO" indicates that the problem has been solved to optimality without time limit. }.
-
-\begin{table}[ht]
-\caption{Time limit values for MuDiLCO protocol versions }
-\centering
-\begin{tabular}{|c|c|c|c|c|}
- \hline
- WSN size & MuDiLCO-1 & MuDiLCO-3 & MuDiLCO-5 & MuDiLCO-7 \\ [0.5ex]
-\hline
- 50 & NO & NO & NO & NO \\
- \hline
-100 & NO & NO & NO & NO \\
-\hline
-150 & NO & NO & NO & 0.03 \\
-\hline
-200 & NO & NO & NO & 0.06 \\
- \hline
- 250 & NO & NO & NO & 0.08 \\
- \hline
-\end{tabular}
-
-\label{tl}
-
-\end{table}
-
+\textcolor{blue}{Our protocol is declined into four versions: MuDiLCO-1,
+ MuDiLCO-3, MuDiLCO-5, and MuDiLCO-7, corresponding respectively to $T=1,3,5,7$
+ ($T$ the number of rounds in one sensing period). Since the time resolution
+ may be prohibitive when the size of the problem increases, a time limit
+ threshold has been fixed when solving large instances. In these cases, the
+ solver returns the best solution found, which is not necessary the optimal
+ one. In practice, we only set time limit values for the three largest network
+ sizes when $T=7$, using the following respective values (in second): 0.03 for
+ 150~nodes, 0.06 for 200~nodes, and 0.08 for 250~nodes.
+% Table \ref{tl} shows time limit values.
+ These time limit thresholds have been set empirically. The basic idea consists
+ in considering the average execution time to solve the integer programs to
+ optimality, then in dividing this average time by three to set the threshold
+ value. After that, this threshold value is increased if necessary so that
+ the solver is able to deliver a feasible solution within the time limit. In
+ fact, selecting the optimal values for the time limits will be investigated in
+ the future.}
+%In Table \ref{tl}, "NO" indicates that the problem has been solved to optimality without time limit.}
+
+%\begin{table}[ht]
+%\caption{Time limit values for MuDiLCO protocol versions }
+%\centering
+%\begin{tabular}{|c|c|c|c|c|}
+% \hline
+% WSN size & MuDiLCO-1 & MuDiLCO-3 & MuDiLCO-5 & MuDiLCO-7 \\ [0.5ex]
+%\hline
+% 50 & NO & NO & NO & NO \\
+% \hline
+%100 & NO & NO & NO & NO \\
+%\hline
+%150 & NO & NO & NO & 0.03 \\
+%\hline
+%200 & NO & NO & NO & 0.06 \\
+% \hline
+% 250 & NO & NO & NO & 0.08 \\
+% \hline
+%\end{tabular}