]> AND Private Git Repository - JournalMultiPeriods.git/blobdiff - article.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by ali
[JournalMultiPeriods.git] / article.tex
index 16831f35887418d8667d80bcfe0ab9073093720a..a0472ddbcb87e0bef9dae227ebdc50b3d8f4b690 100644 (file)
 %% \author[label1,label2]{}
 %% \address[label1]{}
 %% \address[label2]{}
 %% \author[label1,label2]{}
 %% \address[label1]{}
 %% \address[label2]{}
-\author{Ali Kadhum Idrees, Karine Deschinkel, \\
-Michel Salomon, and Rapha\"el Couturier}
+%\author{Ali Kadhum Idrees, Karine Deschinkel, \\
+%Michel Salomon, and Rapha\"el Couturier}
+
 %\thanks{are members in the AND team - DISC department - FEMTO-ST Institute, University of Franche-Comt\'e, Belfort, France.
 % e-mail: ali.idness@edu.univ-fcomte.fr, $\lbrace$karine.deschinkel, michel.salomon, raphael.couturier$\rbrace$@univ-fcomte.fr.}% <-this % stops a space
 %\thanks{}% <-this % stops a space
  
 %\thanks{are members in the AND team - DISC department - FEMTO-ST Institute, University of Franche-Comt\'e, Belfort, France.
 % e-mail: ali.idness@edu.univ-fcomte.fr, $\lbrace$karine.deschinkel, michel.salomon, raphael.couturier$\rbrace$@univ-fcomte.fr.}% <-this % stops a space
 %\thanks{}% <-this % stops a space
  
-\address{FEMTO-ST Institute, University of Franche-Comt\'e, Belfort, France. \\ 
-e-mail: ali.idness@edu.univ-fcomte.fr, \\
-$\lbrace$karine.deschinkel, michel.salomon, raphael.couturier$\rbrace$@univ-fcomte.fr.}
+%\address{FEMTO-ST Institute, University of Franche-Comt\'e, Belfort, France. \\ 
+%e-mail: ali.idness@edu.univ-fcomte.fr, \\
+%$\lbrace$karine.deschinkel, michel.salomon, raphael.couturier$\rbrace$@univ-fcomte.fr.}
+
+
+\author{Ali Kadhum Idrees$^{a,b}$, Karine Deschinkel$^{a}$, \\
+Michel Salomon$^{a}$ and Rapha\"el Couturier $^{a}$ \\
+  $^{a}${\em{FEMTO-ST Institute, UMR 6174 CNRS, \\
+  University Bourgogne Franche-Comt\'e, Belfort, France}} \\ 
+  $^{b}${\em{Department of Computer Science, University of Babylon, Babylon, Iraq}}
+}  
+
 
 \begin{abstract}
 %One of  the fundamental challenges in Wireless Sensor Networks (WSNs)
 
 \begin{abstract}
 %One of  the fundamental challenges in Wireless Sensor Networks (WSNs)
@@ -811,6 +821,165 @@ Active-Sleep packet is obtained.
 
 \end{algorithm}
 
 
 \end{algorithm}
 
+%\textcolor{red}{\textbf{\textsc{Answer:}   ali   }}
+
+
+\section{Genetic Algorithm (GA) for Multiround Lifetime Coverage Optimization}
+\label{GA}
+Metaheuristics  are a generic search strategies for exploring search spaces for solving the complex problems. These strategies have to dynamically balance between the exploitation of the accumulated search experience and the exploration of the search space. On one hand, this balance can find regions in the search space with high-quality solutions. On the other hand, it prevents waste too much time in regions of the search space which are either already explored or don’t provide high-quality solutions. Therefore,  metaheuristic provides an enough good solution to an optimization problem, especially with incomplete  information or limited computation capacity \cite{bianchi2009survey}. Genetic Algorithm (GA) is one of the population-based metaheuristic methods that simulates the process of natural selection \cite{hassanien2015applications}.  GA starts with a population of random candidate solutions (called individuals or phenotypes) . GA uses genetic operators inspired by natural evolution, such as selection, mutation, evaluation, crossover, and replacement so as to improve the initial population of candidate solutions. This process repeated until a stopping criterion is satisfied.
+
+In this section, we present a metaheuristic based GA to solve our multiround lifetime coverage optimization problem. The proposed GA provides a near optimal sechedule for multiround sensing per period. The proposed GA is based on the mathematical model which is presented in Section \ref{pd}. Algorithm \ref{alg:GA} shows the proposed GA to solve the coverage lifetime optimization problem. We named the new protocol which is based on GA in the decision phase as GA-MuDiLCO. The proposed GA can be explained in more details as follow:
+
+\begin{algorithm}[h!]                
+ \small
+ \SetKwInput{Input}{Input}
+ \SetKwInput{Output}{Output}
+ \Input{ $ P, J, T, S_{pop}, \alpha_{j,p}^{ind}, X_{t,j}^{ind}, \Theta_{t,p}^{ind}, U_{t,p}^{ind}, Child_{t,j}^{ind}, Ch.\Theta_{t,p}^{ind}, Ch.U_{t,p}^{ind_1}$}
+ \Output{$\left\{\left(X_{1,1},\dots, X_{t,j}, \dots, X_{T,J}\right)\right\}_{t \in T, j \in J}$}
+
+  \BlankLine
+  %\emph{Initialize the sensor node and determine it's position and subregion} \; 
+  \ForEach {Individual $ind$ $\in$ $S_{pop}$} {
+     \emph{Generate Randomly Chromosome $\left\{\left(X_{1,1},\dots, X_{t,j}, \dots, X_{T,J}\right)\right\}_{t \in T, j \in J}$}\;
+     
+     \emph{Update O-U-Coverage $\left\{(P, J, \alpha_{j,p}^{ind}, X_{t,j}^{ind}, \Theta_{t,p}^{ind}, U_{t,p}^{ind})\right\}_{p \in P}$}\;
+     
+  
+     \emph{Evaluate Individual $(P, J, X_{t,j}^{ind}, \Theta_{t,p}^{ind}, U_{t,p}^{ind})$}\;  
+  }
+  
+  \While{ Stopping criteria is not satisfied }{
+  
+  \emph{Selection $(ind_1, ind_2)$}\;
+    \emph{Crossover $(P_c, X_{t,j}^{ind_1}, X_{t,j}^{ind_2}, Child_{t,j}^{ind_1}, Child_{t,j}^{ind_2})$}\;
+    \emph{Mutation $(P_m, Child_{t,j}^{ind_1}, Child_{t,j}^{ind_2})$}\;
+   
+   
+   \emph{Update O-U-Coverage $(P, J, \alpha_{j,p}^{ind}, Child_{t,j}^{ind_1}, Ch.\Theta_{t,p}^{ind_1}, Ch.U_{t,p}^{ind_1})$}\;
+  \emph{Update O-U-Coverage $(P, J, \alpha_{j,p}^{ind}, Child_{t,j}^{ind_2}, Ch.\Theta_{t,p}^{ind_2}, Ch.U_{t,p}^{ind_2})$}\;  
+\emph{Evaluate New Individual$(P, J, Child_{t,j}^{ind_1}, Ch.\Theta_{t,p}^{ind_1}, Ch.U_{t,p}^{ind_1})$}\;  
+ \emph{Replacement $(P, J, T, Child_{t,j}^{ind_1}, Ch.\Theta_{t,p}^{ind_1}, Ch.U_{t,p}^{ind_1}, X_{t,j}^{ind}, \Theta_{t,p}^{ind}, U_{t,p}^{ind}  )$ }\;
+ \emph{Evaluate New Individual$(P, J, Child_{t,j}^{ind_2}, Ch.\Theta_{t,p}^{ind_2}, Ch.U_{t,p}^{ind_2})$}\;  
+  
+ \emph{Replacement $(P, J, T, Child_{t,j}^{ind_2}, Ch.\Theta_{t,p}^{ind_2}, Ch.U_{t,p}^{ind_2}, X_{t,j}^{ind}, \Theta_{t,p}^{ind}, U_{t,p}^{ind}  )$ }\;
+  
+      
+  }
+  \emph{$\left\{\left(X_{1,1},\dots,X_{t,j},\dots,X_{T,J}\right)\right\}$ =
+            Select Best Solution ($S_{pop}$)}\;
+ \emph{return X} \;
+\caption{GA-MuDiLCO($s_j$)}
+\label{alg:GA}
+
+\end{algorithm}
+
+
+\begin{enumerate} [I)]
+\item \textbf{Representation:} Since the proposed GA's goal is to find the optimal schedule of the sensor nodes which take the responsibility of monitoring the subregion for $T$ rounds in the next phase, the chromosome is defined as a schedule for alive  sensors and each chromosome contains $T$ rounds. Each round in the schedule includes J genes, the total alive sensors in the subregion. Therefore, the gene of such a chromosome is a schedule of a sensor. In other words, The genes corresponding to active nodes have the value of one, the others are zero. Figure \ref{chromo} shows solution representation in the proposed GA.
+%[scale=0.3]
+\begin{figure}[h!]
+\centering
+ \includegraphics [scale=0.35] {rep.eps} 
+\caption{Candidate Solution representation by the proposed GA. }
+\label{chromo}
+\end{figure} 
+
+
+
+\item \textbf{Initialize Population:} The initial population is randomly generated and each chromosome  in the GA population represents a possible sensors schedule solution to cover the entire subregion for $T$ rounds during current period. Each sensor in the chromosome is given a random value (0 or  1) for all rounds. If the random value is 1, the remaining  energy of this sensor should be adequate to activate this sensor during current round. Otherwise, the value is set to 0. The energy constraint is applied for each sensor during all rounds. 
+
+
+\item \textbf{Update O-U-Coverage:} 
+After creating the initial population, The overcoverage $\Theta_{t,p}$ and undercoverage $U_{t,p}$ for each candidate solution are computed (see Algorithm \ref{OU}) so as to use them in the next step.
+
+\begin{algorithm}[h!]                
+  
+ \SetKwInput{Input}{Input}
+ \SetKwInput{Output}{Output}
+ \Input{ parameters $P, J, ind, \alpha_{j,p}^{ind}, X_{t,j}^{ind}$}
+ \Output{$U^{ind} = \left\lbrace U_{1,1}^{ind}, \dots, U_{t,p}^{ind}, \dots, U_{T,P}^{ind} \right\rbrace$ and $\Theta^{ind} = \left\lbrace \Theta_{1,1}^{ind}, \dots, \Theta_{t,p}^{ind}, \dots, \Theta_{T,P}^{ind} \right\rbrace$}
+
+  \BlankLine
+
+  \For{$t\leftarrow 1$ \KwTo $T$}{
+  \For{$p\leftarrow 1$ \KwTo $P$}{
+     
+ %    \For{$i\leftarrow 0$ \KwTo $I_j$}{
+       \emph{$SUM\leftarrow 0$}\;
+         \For{$j\leftarrow 1$ \KwTo $J$}{
+              \emph{$SUM \leftarrow SUM + (\alpha_{j,p}^{ind} \times X_{t,j}^{ind})$ }\;
+         }
+         
+         \If { SUM = 0} {
+         \emph{$U_{t,p}^{ind} \leftarrow 0$}\;
+         \emph{$\Theta_{t,p}^{ind} \leftarrow 1$}\;
+         }
+         \Else{
+         \emph{$U_{t,p}^{ind} \leftarrow SUM -1$}\;
+         \emph{$\Theta_{t,p}^{ind} \leftarrow 0$}\;
+         }
+     
+     }
+     
+  }
+\emph{return $U^{ind}, \Theta^{ind}$ } \;
+\caption{O-U-Coverage}
+\label{OU}
+
+\end{algorithm}
+
+
+
+\item \textbf{Evaluate Population:}
+After creating the initial population, each individual is evaluated and assigned a fitness value according to the fitness function is illustrated in Eq. \eqref{eqf}. In the proposed GA, the optimal (or near optimal) candidate solution, is the one with the minimum value for the fitness function. The lower the fitness values been assigned to an individual, the better opportunity it get survived.  In our works, the function rewards  the decrease in the sensor nodes which cover the same primary point and penalizes the decrease to zero in the sensor nodes which cover the primary point. 
+
+\begin{equation}
+ F^{ind} \leftarrow  \sum_{t=1}^{T} \sum_{p=1}^{P} \left(W_{\theta}* \Theta_{t,p} + W_{U} * U_{t,p}  \right)    \label{eqf} 
+\end{equation}
+
+
+\item \textbf{Selection:} In order to generate a new generation, a portion of the existing population is elected based on a fitness function that ranks the fitness of each candidate solution and preferentially select the best solutions. Two parents should be selected to the mating pool.  In the proposed GA-MuDiLCO algorithm, the first parent is selected by using binary tournament selection to select one of the parents \cite{goldberg1991comparative}. In this method,  two individuals are chosen at random from population and the better of the two
+individuals is selected. If they have similar fitness values, one of them will be selected randomly. The best individual in the population is selected as a second parent.
+
+
+
+\item \textbf{Crossover:} Crossover is a genetic operator used to take more than one parent solutions and produce a child solution from them. If crossover probability $P_c$ is 100$\%$, then the crossover operation takes place between two individuals. If it is 0$\%$, the  two selected individuals in the mating pool will be the new chromosomes without crossover. In the proposed GA, a two-point crossover is used. Figure \ref{cross} gives an example for a two-point crossover for 8 sensors in the subregion and the schedule for 3 rounds.
+
+
+\begin{figure}[h!]
+\centering
+ \includegraphics [scale = 0.3] {crossover.eps} 
+\caption{Two-point crossover. }
+\label{cross}
+\end{figure} 
+
+
+\item \textbf{Mutation:}
+Mutation is a divergence operation which introduces random modifications.  The purpose of the mutation is to maintain diversity within the population and prevent premature convergence. Mutation is used to add new genetic information (divergence) in order to achieve a global search over the solution search space and avoid to fall in local optima. The mutation oprator in the proposed GA-MuDiLCO works as follow: If mutation probability $P_m$ is 100$\%$, then the mutation operation takes place on the the new individual. The round number is selected randomly within (1..T) in the schedule solution. After that one sensor within this round is selected randomly within (1..J). If the sensor is scheduled as active "1", it should be rescheduled to sleep "0". If the sensor is scheduled as sleep, it rescheduled to active only if it has adequate remaining energy.
+
+
+\item \textbf{Update O-U-Coverage for children:}
+Before evalute each new individual, Algorithm \ref{OU} is called for each new individual to compute the new undercoverage $Ch.U$ and overcoverage $Ch.\Theta$ parameters. 
+\item \textbf{Evaluate New Individuals:}
+Each new individual is evaluated using Eq. \ref{eqf} but with using the new undercoverage $Ch.U$ and overcoverage $Ch.\Theta$ parameters of the new children.
+
+\item \textbf{Replacement:}
+After evaluatation of new children, Triple Tournament Replacement (TTR) will be applied for each new individual. In TTR strategy, three individuals are selected
+randomly from the population. Find the worst from them and then check its fitness with the new individual fitness. If the fitness of the new individual is better than the fitness of  the worst individual, replace the new individual with the worst individual. Otherwise, the replacement is not done. 
+
+\item \textbf{Stopping criteria:}
+The proposed GA-MuDiLCO stops when the stopping criteria is met. It stops after running for an amount of time in seconds equal to \textbf{Time limit}. The \textbf{Time limit} is the execution time obtained by the optimization solver GLPK for solving the same size of problem divided by two. The best solution will be selected as a schedule of sensors for $T$ rounds during the sensing phase in the current period.
+
+
+
+\end{enumerate} 
+
+
+
 \section{Experimental study}
 \label{exp}
 \subsection{Simulation setup}
 \section{Experimental study}
 \label{exp}
 \subsection{Simulation setup}
@@ -1079,7 +1248,7 @@ rounds, and thus should extend the network lifetime.
 
 \begin{figure}[ht!]
 \centering
 
 \begin{figure}[ht!]
 \centering
- \includegraphics[scale=0.5] {R1/CR.pdf} 
+ \includegraphics[scale=0.5] {R/CR.pdf} 
 \caption{Average coverage ratio for 150 deployed nodes}
 \label{fig3}
 \end{figure} 
 \caption{Average coverage ratio for 150 deployed nodes}
 \label{fig3}
 \end{figure} 
@@ -1100,7 +1269,7 @@ nodes in a more efficient manner.
 
 \begin{figure}[ht!]
 \centering
 
 \begin{figure}[ht!]
 \centering
-\includegraphics[scale=0.5]{R1/ASR.pdf}  
+\includegraphics[scale=0.5]{R/ASR.pdf}  
 \caption{Active sensors ratio for 150 deployed nodes}
 \label{fig4}
 \end{figure} 
 \caption{Active sensors ratio for 150 deployed nodes}
 \label{fig4}
 \end{figure} 
@@ -1122,7 +1291,7 @@ still connected.
 
 \begin{figure}[ht!]
 \centering
 
 \begin{figure}[ht!]
 \centering
-\includegraphics[scale=0.5]{R1/SR.pdf} 
+\includegraphics[scale=0.5]{R/SR.pdf} 
 \caption{Cumulative percentage of stopped simulation runs for 150 deployed nodes }
 \label{fig6}
 \end{figure} 
 \caption{Cumulative percentage of stopped simulation runs for 150 deployed nodes }
 \label{fig6}
 \end{figure} 
@@ -1138,9 +1307,9 @@ network sizes, for $Lifetime_{95}$ and $Lifetime_{50}$.
 \begin{figure}[h!]
   \centering
   \begin{tabular}{cl}
 \begin{figure}[h!]
   \centering
   \begin{tabular}{cl}
-    \parbox{9.5cm}{\includegraphics[scale=0.5]{R1/EC95.pdf}} & (a) \\
+    \parbox{9.5cm}{\includegraphics[scale=0.5]{R/EC95.pdf}} & (a) \\
     \verb+ + \\
     \verb+ + \\
-    \parbox{9.5cm}{\includegraphics[scale=0.5]{R1/EC50.pdf}} & (b)
+    \parbox{9.5cm}{\includegraphics[scale=0.5]{R/EC50.pdf}} & (b)
   \end{tabular}
   \caption{Energy consumption for (a) $Lifetime_{95}$ and 
     (b) $Lifetime_{50}$}
   \end{tabular}
   \caption{Energy consumption for (a) $Lifetime_{95}$ and 
     (b) $Lifetime_{50}$}
@@ -1176,7 +1345,7 @@ for different network sizes.
 
 \begin{figure}[ht!]
 \centering
 
 \begin{figure}[ht!]
 \centering
-\includegraphics[scale=0.5]{R1/T.pdf}  
+\includegraphics[scale=0.5]{R/T.pdf}  
 \caption{Execution Time (in seconds)}
 \label{fig77}
 \end{figure} 
 \caption{Execution Time (in seconds)}
 \label{fig77}
 \end{figure} 
@@ -1214,9 +1383,9 @@ linked.
 \begin{figure}[t!]
   \centering
   \begin{tabular}{cl}
 \begin{figure}[t!]
   \centering
   \begin{tabular}{cl}
-    \parbox{9.5cm}{\includegraphics[scale=0.5]{R1/LT95.pdf}} & (a) \\
+    \parbox{9.5cm}{\includegraphics[scale=0.5]{R/LT95.pdf}} & (a) \\
     \verb+ + \\
     \verb+ + \\
-    \parbox{9.5cm}{\includegraphics[scale=0.5]{R1/LT50.pdf}} & (b)
+    \parbox{9.5cm}{\includegraphics[scale=0.5]{R/LT50.pdf}} & (b)
   \end{tabular}
   \caption{Network lifetime for (a) $Lifetime_{95}$ and 
     (b) $Lifetime_{50}$}
   \end{tabular}
   \caption{Network lifetime for (a) $Lifetime_{95}$ and 
     (b) $Lifetime_{50}$}