-working nodes in the active mode.
-
-Instead of working with a continuous coverage area, we make it discrete by
-considering for each sensor a set of points called primary points. Consequently,
-we assume that the sensing disk defined by a sensor is covered if all of its
-primary points are covered. The choice of number and locations of primary points
-is the subject of another study not presented here.
-
-%By knowing the position (point center: ($p_x,p_y$)) of a wireless
-%sensor node and its $R_s$, we calculate the primary points directly
-%based on the proposed model. We use these primary points (that can be
-%increased or decreased if necessary) as references to ensure that the
-%monitored region of interest is covered by the selected set of
-%sensors, instead of using all the points in the area.
-
-%The MuDiLCO protocol works in periods and executed at each sensor node in the network, each sensor node can still sense data while being in
-%LISTENING mode. Thus, by entering the LISTENING mode at the beginning of each round,
-%sensor nodes still executing sensing task while participating in the leader election and decision phases. More specifically, The MuDiLCO protocol algorithm works as follow:
-%Initially, the sensor node check it's remaining energy in order to participate in the current round. Each sensor node determines it's position and it's subregion based Embedded GPS or Location Discovery Algorithm. After that, All the sensors collect position coordinates, current remaining energy, sensor node id, and the number of its one-hop live neighbors during the information exchange. It stores this information into a list $L$.
-%The sensor node enter in listening mode waiting to receive ActiveSleep packet from the leader after the decision to apply multi-round activity scheduling during the sensing phase. Each sensor node will execute the Algorithm~1 to know who is the leader. After that, if the sensor node is leader, It will execute the integer program algorithm ( see section~\ref{cp}) to optimize the coverage and the lifetime in it's subregion. After the decision, the optimization approach will produce the cover sets of sensor nodes to take the mission of coverage during the sensing phase for $T$ rounds. The leader will send ActiveSleep packet to each sensor node in the subregion to inform him to it's schedule for $T$ rounds during the period of sensing, either Active or sleep until the starting of next period. Based on the decision, the leader as other nodes in subregion, either go to be active or go to be sleep based on it's schedule for $T$ rounds during current sensing phase. the other nodes in the same subregion will stay in listening mode waiting the ActiveSleep packet from the leader. After finishing the time period for sensing, which are includes $T$ rounds, all the sensor nodes in the same subregion will start new period by executing the MuDiLCO protocol and the lifetime in the subregion will continue until all the sensor nodes are died or the network becomes disconnected in the subregion.
+active nodes.\fi
+
+\textcolor{green}{We consider a scenario where sensors are deployed in high density to ensure initially
+a high coverage ratio of the interested area. Each sensor has a predefined sensing range $R_s$, an initial energy supply (eventually different from each other) and is supposed to be equipped with module for locating its geographical positions. All space points within the disk centered at the sensor with the radius of the sensing
+range is said to be covered by this sensor.}
+
+\indent Instead of working with the coverage area, we consider for each sensor a
+set of points called primary points~\cite{idrees2014coverage}. We assume that
+the sensing disk defined by a sensor is covered if all the primary points of
+this sensor are covered. By knowing the position of wireless sensor node
+(centered at the the position $\left(p_x,p_y\right)$) and its sensing range
+$R_s$, we define up to 25 primary points $X_1$ to $X_{25}$ as decribed on
+Figure~\ref{fig1}. The optimal number of primary points is investigated in
+section~\ref{ch4:sec:04:06}.
+
+The coordinates of the primary points are defined as follows:\\
+%$(p_x,p_y)$ = point center of wireless sensor node\\
+$X_1=(p_x,p_y)$ \\
+$X_2=( p_x + R_s * (1), p_y + R_s * (0) )$\\
+$X_3=( p_x + R_s * (-1), p_y + R_s * (0)) $\\
+$X_4=( p_x + R_s * (0), p_y + R_s * (1) )$\\
+$X_5=( p_x + R_s * (0), p_y + R_s * (-1 )) $\\
+$X_6=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_7=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_8=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_9=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_{10}= ( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (0)) $\\
+$X_{11}=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (0))$\\
+$X_{12}=( p_x + R_s * (0), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{13}=( p_x + R_s * (0), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_{14}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (\frac{1}{2})) $\\
+$X_{15}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (\frac{1}{2})) $\\
+$X_{16}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (\frac{- 1}{2})) $\\
+$X_{17}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (\frac{- 1}{2})) $\\
+$X_{18}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (0)) $\\
+$X_{19}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (0)) $\\
+$X_{20}=( p_x + R_s * (0), p_y + R_s * (\frac{1}{2})) $\\
+$X_{21}=( p_x + R_s * (0), p_y + R_s * (-\frac{1}{2})) $\\
+$X_{22}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{\sqrt{3}}{2})) $\\
+$X_{23}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{\sqrt{3}}{2})) $\\
+$X_{24}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $\\
+$X_{25}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $.
+
+\begin{figure}[h]
+ \centering
+ \includegraphics[scale=0.375]{fig26.pdf}
+ \label{fig1}
+ \caption{Wireless sensor node represented by up to 25~primary points}
+\end{figure}