]> AND Private Git Repository - JournalMultiPeriods.git/blobdiff - article.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
First modifications (up to section 3.2)
[JournalMultiPeriods.git] / article.tex
index 777d52e22f0bc06cb8ece824c9ebd3e182fced18..192acf53c897b42d8a65d77d937c9407765a38a8 100644 (file)
 %e-mail: ali.idness@edu.univ-fcomte.fr, \\
 %$\lbrace$karine.deschinkel, michel.salomon, raphael.couturier$\rbrace$@univ-fcomte.fr.}
 
 %e-mail: ali.idness@edu.univ-fcomte.fr, \\
 %$\lbrace$karine.deschinkel, michel.salomon, raphael.couturier$\rbrace$@univ-fcomte.fr.}
 
-
-\author{Ali Kadhum Idrees$^{a,b}$, Karine Deschinkel$^{a}$, \\
-Michel Salomon$^{a}$ and Rapha\"el Couturier $^{a}$ \\
-  $^{a}${\em{FEMTO-ST Institute, UMR 6174 CNRS, \\
-  University Bourgogne Franche-Comt\'e, Belfort, France}} \\ 
-  $^{b}${\em{Department of Computer Science, University of Babylon, Babylon, Iraq}}
-}  
-
+\author{Ali   Kadhum   Idrees$^{a,b}$,   Karine  Deschinkel$^{a}$,   \\   Michel
+  Salomon$^{a}$,   and  Rapha\"el   Couturier   $^{a}$  \\   $^{a}${\em{FEMTO-ST
+      Institute,  UMR  6174  CNRS,   \\  University  Bourgogne  Franche-Comt\'e,
+      Belfort, France}} \\ $^{b}${\em{Department of Computer Science, University
+      of Babylon, Babylon, Iraq}} }
 
 \begin{abstract}
 %One of  the fundamental challenges in Wireless Sensor Networks (WSNs)
 
 \begin{abstract}
 %One of  the fundamental challenges in Wireless Sensor Networks (WSNs)
@@ -99,31 +96,33 @@ Michel Salomon$^{a}$ and Rapha\"el Couturier $^{a}$ \\
 %continuously  and  effectively  when  monitoring a  certain  area  (or
 %region) of  interest. 
 Coverage and  lifetime are  two paramount problems  in Wireless  Sensor Networks
 %continuously  and  effectively  when  monitoring a  certain  area  (or
 %region) of  interest. 
 Coverage and  lifetime are  two paramount problems  in Wireless  Sensor Networks
-(WSNs). In this paper, a method called Multiround Distributed Lifetime Coverage
+(WSNs). In this paper, a  method called Multiround Distributed Lifetime Coverage
 Optimization  protocol (MuDiLCO)  is proposed  to maintain  the coverage  and to
 improve the lifetime in wireless sensor  networks. The area of interest is first
 Optimization  protocol (MuDiLCO)  is proposed  to maintain  the coverage  and to
 improve the lifetime in wireless sensor  networks. The area of interest is first
-divided  into subregions and  then the  MuDiLCO protocol  is distributed  on the
-sensor nodes in each subregion. The proposed MuDiLCO protocol works in periods
-during which sets of sensor nodes are scheduled to remain active for a number of
-rounds  during the  sensing phase,  to  ensure coverage  so as  to maximize  the
-lifetime of  WSN. \textcolor{green}{The decision process is  carried out by a  leader node, which
-solves an optimization problem to  produce the best  representative sets to  be used
-during the rounds  of the sensing phase. The optimization problem formulated as an integer program is solved either to optimality through a branch-and-Bound method or to near-optimality using a genetic algorithm-based heuristic. }
+divided into  subregions and  then the  MuDiLCO protocol  is distributed  on the
+sensor nodes in  each subregion. The proposed MuDiLCO protocol  works in periods
+during which sets of sensor nodes are  scheduled, with one set for each round of
+a period, to remain active during the  sensing phase and thus ensure coverage so
+as  to maximize  the  WSN lifetime.   \textcolor{blue}{The  decision process  is
+  carried out by a leader node,  which solves an optimization problem to produce
+  the  best representative  sets to  be used  during the  rounds of  the sensing
+  phase. The optimization problem formulated as  an integer program is solved to
+  optimality through a Branch-and-Bound method  for small instances.  For larger
+  instances, the best  feasible solution found by the solver  after a given time
+  limit threshold is considered.}
 %The decision process is  carried out by a  leader node, which
 %solves an  integer program to  produce the best  representative sets to  be used
 %during the rounds  of the sensing phase. 
 %\textcolor{red}{The integer program is solved by either GLPK solver or Genetic Algorithm (GA)}. 
 %The decision process is  carried out by a  leader node, which
 %solves an  integer program to  produce the best  representative sets to  be used
 %during the rounds  of the sensing phase. 
 %\textcolor{red}{The integer program is solved by either GLPK solver or Genetic Algorithm (GA)}. 
-Compared  with some existing protocols,
-simulation  results based  on  multiple criteria  (energy consumption,  coverage
-ratio, and  so on) show that  the proposed protocol can  prolong efficiently the
-network lifetime and improve the coverage performance.
-
+Compared  with some  existing protocols,  simulation results  based on  multiple
+criteria (energy consumption, coverage ratio, and  so on) show that the proposed
+protocol can prolong  efficiently the network lifetime and  improve the coverage
+performance.
 \end{abstract}
 
 \begin{keyword}
 Wireless   Sensor   Networks,   Area   Coverage,   Network   Lifetime,
 Optimization, Scheduling, Distributed Computation.
 \end{abstract}
 
 \begin{keyword}
 Wireless   Sensor   Networks,   Area   Coverage,   Network   Lifetime,
 Optimization, Scheduling, Distributed Computation.
-
 \end{keyword}
 
 \end{frontmatter}
 \end{keyword}
 
 \end{frontmatter}
@@ -167,10 +166,10 @@ the network lifetime by using an optimized multiround scheduling.
 
 The remainder of the paper is organized as follows. The next section
 % Section~\ref{rw}
 
 The remainder of the paper is organized as follows. The next section
 % Section~\ref{rw}
-reviews  the related works  in the  field.  Section~\ref{pd}  is devoted  to the
+reviews the  related works  in the  field.  Section~\ref{pd}  is devoted  to the
 description of MuDiLCO protocol.  Section~\ref{exp} shows the simulation results
 obtained using  the discrete event  simulator OMNeT++ \cite{varga}.   They fully
 description of MuDiLCO protocol.  Section~\ref{exp} shows the simulation results
 obtained using  the discrete event  simulator OMNeT++ \cite{varga}.   They fully
-demonstrate  the  usefulness  of   the  proposed  approach.   Finally,  we  give
+demonstrate  the  usefulness  of  the   proposed  approach.   Finally,  we  give
 concluding    remarks   and    some    suggestions   for    future   works    in
 Section~\ref{sec:conclusion}.
 
 concluding    remarks   and    some    suggestions   for    future   works    in
 Section~\ref{sec:conclusion}.
 
@@ -204,43 +203,47 @@ many cover sets) can be added to the above list.
 The major approach  is to divide/organize the sensors into  a suitable number of
 cover sets where  each set completely covers an interest  region and to activate
 these cover sets successively.  The centralized algorithms always provide nearly
 The major approach  is to divide/organize the sensors into  a suitable number of
 cover sets where  each set completely covers an interest  region and to activate
 these cover sets successively.  The centralized algorithms always provide nearly
-or close  to optimal solution since the  algorithm has global view  of the whole
+or close to  optimal solution since the  algorithm has global view  of the whole
 network. Note that  centralized algorithms have the advantage  of requiring very
 low  processing  power  from  the  sensor  nodes,  which  usually  have  limited
 network. Note that  centralized algorithms have the advantage  of requiring very
 low  processing  power  from  the  sensor  nodes,  which  usually  have  limited
-processing  capabilities. The  main drawback  of this  kind of  approach  is its
+processing  capabilities. The  main drawback  of this  kind of  approach is  its
 higher cost in communications, since the  node that will make the decision needs
 higher cost in communications, since the  node that will make the decision needs
-information from all the  sensor nodes. \textcolor{green} {Exact or heuristics approaches are designed to provide cover sets.
- %(Moreover, centralized approaches usually
+information from  all the sensor  nodes.  \textcolor{blue} {Exact  or heuristics
+  approaches are designed to provide cover sets.
+%(Moreover, centralized approaches usually
 %suffer from the scalability problem, making them less competitive as the network
 %size increases.) 
 %suffer from the scalability problem, making them less competitive as the network
 %size increases.) 
-Contrary to exact methods, heuristic methods can handle very large and centralized problems. They are proposed to reduce computational overhead such as energy consumption, delay and generally increase in
-the network lifetime. }
+Contrary to exact methods, heuristic ones  can handle very large and centralized
+problems.  They are  proposed to  reduce computational  overhead such  as energy
+consumption, delay, and generally allow to increase the network lifetime.}
 
 The first algorithms proposed in the literature consider that the cover sets are
 disjoint:  a  sensor  node  appears  in  exactly  one  of  the  generated  cover
 
 The first algorithms proposed in the literature consider that the cover sets are
 disjoint:  a  sensor  node  appears  in  exactly  one  of  the  generated  cover
-sets~\cite{abrams2004set,cardei2005improving,Slijepcevic01powerefficient}.     In
-the   case  of  non-disjoint   algorithms  \cite{pujari2011high},   sensors  may
-participate in  more than one  cover set.  In  some cases, this may  prolong the
+sets~\cite{abrams2004set,cardei2005improving,Slijepcevic01powerefficient}.    In
+the  case   of  non-disjoint   algorithms  \cite{pujari2011high},   sensors  may
+participate in  more than one  cover set.  In some  cases, this may  prolong the
 lifetime of the network in comparison  to the disjoint cover set algorithms, but
 lifetime of the network in comparison  to the disjoint cover set algorithms, but
-designing  algorithms for  non-disjoint cover  sets generally  induces  a higher
+designing  algorithms for  non-disjoint cover  sets generally  induces  higher
 order  of complexity.   Moreover, in  case of  a sensor's  failure, non-disjoint
 order  of complexity.   Moreover, in  case of  a sensor's  failure, non-disjoint
-scheduling  policies are less  resilient and  reliable because  a sensor  may be
+scheduling policies  are less  resilient and  reliable because  a sensor  may be
 involved in more than one cover sets.
 %For instance, the proposed work in ~\cite{cardei2005energy, berman04}    
 
 involved in more than one cover sets.
 %For instance, the proposed work in ~\cite{cardei2005energy, berman04}    
 
-In~\cite{yang2014maximum},  the  authors have  considered  a linear  programming
+In~\cite{yang2014maximum},  the authors  have  considered  a linear  programming
 approach  to select  the minimum  number of  working sensor  nodes, in  order to
 approach  to select  the minimum  number of  working sensor  nodes, in  order to
-preserve a  maximum coverage  and to  extend lifetime of  the network.  Cheng et
+preserve a  maximum coverage and  to extend lifetime  of the network.   Cheng et
 al.~\cite{cheng2014energy} have defined a  heuristic algorithm called Cover Sets
 Balance  (CSB), which  chooses  a set  of  active nodes  using  the tuple  (data
 coverage range, residual  energy).  Then, they have introduced  a new Correlated
 al.~\cite{cheng2014energy} have defined a  heuristic algorithm called Cover Sets
 Balance  (CSB), which  chooses  a set  of  active nodes  using  the tuple  (data
 coverage range, residual  energy).  Then, they have introduced  a new Correlated
-Node Set Computing (CNSC) algorithm to  find the correlated node set for a given
-node.   After that,  they  proposed a  High  Residual Energy  First (HREF)  node
-selection algorithm to minimize the number  of active nodes so as to prolong the
-network  lifetime.  Various  centralized  methods  based  on  column  generation
-approaches                    have                   also                   been
-proposed~\cite{gentili2013,castano2013column,rossi2012exact,deschinkel2012column}. 
-\textcolor{green}{In~\cite{gentili2013}, authors highlight the trade-off between the network lifetime and the coverage percentage. They show that network lifetime can be hugely improved by decreasing the coverage ratio. }
+Node Set Computing (CNSC) algorithm to find  the correlated node set for a given
+node.   After that,  they  proposed a  High Residual  Energy  First (HREF)  node
+selection algorithm to minimize the number of  active nodes so as to prolong the
+network  lifetime.   Various  centralized  methods based  on  column  generation
+approaches                   have                    also                   been
+proposed~\cite{gentili2013,castano2013column,rossi2012exact,deschinkel2012column}.
+\textcolor{blue}{In~\cite{gentili2013}, authors highlight  the trade-off between
+  the  network lifetime  and the  coverage  percentage. They  show that  network
+  lifetime can be hugely improved by decreasing the coverage ratio.}
 
 \subsection{Distributed approaches}
 %{\bf Distributed approaches}
 
 \subsection{Distributed approaches}
 %{\bf Distributed approaches}
@@ -297,16 +300,19 @@ Indeed, each sensor  maintains its own timer and its  wake-up time is randomized
 \cite{Ye03} or regulated \cite{cardei2005maximum} over time.
 
 The MuDiLCO protocol (for  Multiround Distributed Lifetime Coverage Optimization
 \cite{Ye03} or regulated \cite{cardei2005maximum} over time.
 
 The MuDiLCO protocol (for  Multiround Distributed Lifetime Coverage Optimization
-protocol) presented  in this  paper is an  extension of the  approach introduced
+protocol) presented  in this paper  is an  extension of the  approach introduced
 in~\cite{idrees2014coverage}.   In~\cite{idrees2014coverage},  the  protocol  is
 in~\cite{idrees2014coverage}.   In~\cite{idrees2014coverage},  the  protocol  is
-deployed over  only two  subregions. Simulation results  have shown that  it was
+deployed over  only two subregions.  Simulation results  have shown that  it was
 more  interesting  to  divide  the  area  into  several  subregions,  given  the
 computation complexity. Compared to our previous paper, in this one we study the
 possibility of dividing  the sensing phase into multiple rounds  and we also add
 more  interesting  to  divide  the  area  into  several  subregions,  given  the
 computation complexity. Compared to our previous paper, in this one we study the
 possibility of dividing  the sensing phase into multiple rounds  and we also add
-an  improved  model  of energy  consumption  to  assess  the efficiency  of  our
+an  improved  model of  energy  consumption  to  assess  the efficiency  of  our
 approach. In fact, in this paper we make a multiround optimization, while it was
 approach. In fact, in this paper we make a multiround optimization, while it was
-a single round optimization in our previous work. \textcolor{green}{The idea is to take advantage of the pre-sensing phase
- to plan the sensor's activity for several rounds instead of one, thus saving energy. In addition, as the optimization problem has become more complex, a GA-based heuristic is proposed to solve it}.
+a single round  optimization in our previous work.  \textcolor{blue}{The idea is
+  to take advantage  of the pre-sensing phase to plan  the sensor's activity for
+  several  rounds instead  of one,  thus saving  energy. In  addition, when  the
+  optimization problem becomes  more complex, its resolution is  stopped after a
+  given time threshold}.
 
 \iffalse
    
 
 \iffalse
    
@@ -538,10 +544,69 @@ Zhou~\cite{Zhang05} proved that if  the transmission range fulfills the previous
 hypothesis, a complete coverage of  a convex area implies connectivity among the
 active nodes.
 
 hypothesis, a complete coverage of  a convex area implies connectivity among the
 active nodes.
 
-Instead  of working  with a  continuous coverage  area, we  make it  discrete by
-considering for each sensor a set of points called primary points. Consequently,
-we assume  that the sensing disk  defined by a sensor  is covered if  all of its
-primary points are covered. The choice of number and locations of primary points is the subject of another study not presented here.
+%Instead  of working  with a  continuous coverage  area, we  make it  discrete by considering for each sensor a set of points called primary points. Consequently, we assume  that the sensing disk  defined by a sensor  is covered if  all of its primary points are covered. The choice of number and locations of primary points is the subject of another study not presented here.
+
+\indent Instead of working with the coverage area, we consider for each sensor a
+set of  points called  primary points~\cite{idrees2014coverage}. We  assume that
+the sensing  disk defined by a  sensor is covered  if all the primary  points of
+this  sensor are  covered.   By knowing  the position  of  wireless sensor  node
+(centered at  the the  position $\left(p_x,p_y\right)$)  and it's  sensing range
+$R_s$,  we define  up to  25 primary  points $X_1$  to $X_{25}$  as decribed  on
+Figure~\ref{fig1}. The optimal number of primary points is investigated in
+subsection~\ref{ch4:sec:04:06}.
+
+The coordinates of the primary points are defined as follows:\\
+%$(p_x,p_y)$ = point center of wireless sensor node\\  
+$X_1=(p_x,p_y)$ \\ 
+$X_2=( p_x + R_s * (1), p_y + R_s * (0) )$\\           
+$X_3=( p_x + R_s * (-1), p_y + R_s * (0)) $\\
+$X_4=( p_x + R_s * (0), p_y + R_s * (1) )$\\
+$X_5=( p_x + R_s * (0), p_y + R_s * (-1 )) $\\
+$X_6= ( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (0)) $\\
+$X_7=( p_x + R_s *  (\frac{\sqrt{2}}{2}), p_y + R_s * (0))$\\
+$X_8=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_9=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_{10}=( p_x + R_s * (\frac{-\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{11}=( p_x + R_s * (\frac{\sqrt{2}}{2}), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{12}=( p_x + R_s * (0), p_y + R_s * (\frac{\sqrt{2}}{2})) $\\
+$X_{13}=( p_x + R_s * (0), p_y + R_s * (\frac{-\sqrt{2}}{2})) $\\
+$X_{14}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (\frac{1}{2})) $\\
+$X_{15}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (\frac{1}{2})) $\\
+$X_{16}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (\frac{- 1}{2})) $\\
+$X_{17}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (\frac{- 1}{2})) $\\
+$X_{18}=( p_x + R_s * (\frac{\sqrt{3}}{2}), p_y + R_s * (0)) $\\
+$X_{19}=( p_x + R_s * (\frac{-\sqrt{3}}{2}), p_y + R_s * (0)) $\\
+$X_{20}=( p_x + R_s * (0), p_y + R_s * (\frac{1}{2})) $\\
+$X_{21}=( p_x + R_s * (0), p_y + R_s * (-\frac{1}{2})) $\\
+$X_{22}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{\sqrt{3}}{2})) $\\
+$X_{23}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{\sqrt{3}}{2})) $\\
+$X_{24}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $\\
+$X_{25}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $.
+
+
+%\begin{figure} %[h!]
+%\centering
+% \begin{multicols}{2}
+%\centering
+%\includegraphics[scale=0.28]{fig21.pdf}\\~ (a)
+%\includegraphics[scale=0.28]{principles13.pdf}\\~(c) 
+%\hfill \hfill
+%\includegraphics[scale=0.28]{fig25.pdf}\\~(e)
+%\includegraphics[scale=0.28]{fig22.pdf}\\~(b)
+%\hfill \hfill
+%\includegraphics[scale=0.28]{fig24.pdf}\\~(d)
+%\includegraphics[scale=0.28]{fig26.pdf}\\~(f)
+%\end{multicols} 
+%\caption{Wireless Sensor Node represented by (a) 5, (b) 9, (c) 13, (d) 17, (e) 21 and (f) 25 primary points respectively}
+%\label{fig1}
+%\end{figure}
+    
+\begin{figure}[h]
+  \centering
+  \includegraphics[scale=0.375]{fig26.pdf}
+  \label{fig1}
+  \caption{Wireless sensor node represented by up to 25~primary points}
+\end{figure}
 
 %By  knowing the  position (point  center: ($p_x,p_y$))  of  a wireless
 %sensor node  and its $R_s$,  we calculate the primary  points directly
 
 %By  knowing the  position (point  center: ($p_x,p_y$))  of  a wireless
 %sensor node  and its $R_s$,  we calculate the primary  points directly
@@ -558,14 +623,22 @@ primary points are covered. The choice of number and locations of primary points
 
 \subsection{Background idea}
 %%RC : we need to clarify the difference between round and period. Currently it seems to be the same (for me at least).
 
 \subsection{Background idea}
 %%RC : we need to clarify the difference between round and period. Currently it seems to be the same (for me at least).
-The area of  interest can be divided using  the divide-and-conquer strategy into
-smaller  areas,  called  subregions,  and  then our MuDiLCO  protocol will be
-implemented in each subregion in a distributed way.
+%The area of  interest can be divided using  the divide-and-conquer strategy into
+%smaller  areas,  called  subregions,  and  then our MuDiLCO  protocol will be
+%implemented in each subregion in a distributed way.
+
+\textcolor{blue}{The WSN area of  interest is, in a first step,  divided into regular homogeneous
+subregions using a  divide-and-conquer algorithm. In a second  step our protocol
+will  be executed  in  a distributed  way in  each  subregion simultaneously  to
+schedule nodes' activities  for one sensing period. Sensor nodes  are assumed to
+be deployed  almost uniformly over the  region. The regular subdivision  is made
+such that the number of hops between  any pairs of sensors inside a subregion is
+less than or equal to 3.}
 
 As  can be seen  in Figure~\ref{fig2},  our protocol  works in  periods fashion,
 where  each is  divided  into 4  phases: Information~Exchange,  Leader~Election,
 Decision, and Sensing.  Each sensing phase may be itself divided into $T$ rounds
 
 As  can be seen  in Figure~\ref{fig2},  our protocol  works in  periods fashion,
 where  each is  divided  into 4  phases: Information~Exchange,  Leader~Election,
 Decision, and Sensing.  Each sensing phase may be itself divided into $T$ rounds
-\textcolor{green} {of equal duration} and for each round a set of sensors (a cover set) is responsible for the sensing
+\textcolor{blue} {of equal duration} and for each round a set of sensors (a cover set) is responsible for the sensing
 task. In  this way  a multiround optimization  process is performed  during each
 period  after  Information~Exchange  and  Leader~Election phases,  in  order  to
 produce $T$ cover sets that will take the mission of sensing for $T$ rounds.
 task. In  this way  a multiround optimization  process is performed  during each
 period  after  Information~Exchange  and  Leader~Election phases,  in  order  to
 produce $T$ cover sets that will take the mission of sensing for $T$ rounds.
@@ -588,7 +661,7 @@ running out of energy), because it works in periods.
 decision, the node will not participate to this phase, and, on the other hand,
 if the node failure occurs after the decision, the sensing  task of the network
 will be temporarily affected:  only during  the period of sensing until a new
 decision, the node will not participate to this phase, and, on the other hand,
 if the node failure occurs after the decision, the sensing  task of the network
 will be temporarily affected:  only during  the period of sensing until a new
-period starts. \textcolor{green}{The duration of the rounds are predefined parameters. Round duration should be long enough to hide the system control overhead and short enough to minimize the negative effects in case of node failure.}
+period starts. \textcolor{blue}{The duration of the rounds are predefined parameters. Round duration should be long enough to hide the system control overhead and short enough to minimize the negative effects in case of node failure.}
 
 %%RC so if there are at least one failure per period, the coverage is bad...
 %%MS if we want to be reliable against many node failures we need to have an
 
 %%RC so if there are at least one failure per period, the coverage is bad...
 %%MS if we want to be reliable against many node failures we need to have an
@@ -658,70 +731,26 @@ consumption due to the communications.
 
 \subsection{Decision phase}
 
 
 \subsection{Decision phase}
 
-Each  WSNL will \textcolor{red}{ execute an optimization algorithm (see section \ref{oa})} to  select which  cover sets  will be
+Each  WSNL will \textcolor{blue}{ solve an integer program to  select which  cover sets  will be
 activated in  the following  sensing phase  to cover the  subregion to  which it
 activated in  the following  sensing phase  to cover the  subregion to  which it
-belongs.  The \textcolor{red}{optimization algorithm} will produce $T$ cover sets,  one for each round. The WSNL will send an Active-Sleep  packet to each sensor in the subregion based on the algorithm's results, indicating if  the sensor should be active or not in
-each round  of the  sensing phase.  
-
-%solve  an integer  program
-
-\subsection{Sensing phase}
-
-The sensing phase consists of $T$ rounds. Each sensor node in the subregion will
-receive an Active-Sleep packet from WSNL, informing it to stay awake or to go to
-sleep for each round of the sensing  phase.  Algorithm~\ref{alg:MuDiLCO}, which
-will be  executed by each node  at the beginning  of a period, explains  how the
-Active-Sleep packet is obtained.
+belongs.  $T$ cover sets will be produced,  one for each round. The WSNL will send an Active-Sleep  packet to each sensor in the subregion based on the algorithm's results, indicating if  the sensor should be active or not in
+each round  of the  sensing phase.  }
+%Each  WSNL will \textcolor{red}{ execute an optimization algorithm (see section \ref{oa})} to  select which  cover sets  will be
+%activated in  the following  sensing phase  to cover the  subregion to  which it
+%belongs.  The \textcolor{red}{optimization algorithm} will produce $T$ cover sets,  one for each round. The WSNL will send an Active-Sleep  packet to each sensor in the subregion based on the algorithm's results, indicating if  the sensor should be active or not in
+%each round  of the  sensing phase.  
 
 
-% In each round during the sensing phase, there is a cover set of sensor nodes,  in which  the active  sensors will  execute  their sensing  task  to preserve maximal  coverage and lifetime in the subregion and this will continue until finishing the round $T$ and starting new period. 
 
 
-\begin{algorithm}[h!]                
- % \KwIn{all the parameters related to information exchange}
-%  \KwOut{$winer-node$ (: the id of the winner sensor node, which is the leader of current round)}
-  \BlankLine
-  %\emph{Initialize the sensor node and determine it's position and subregion} \; 
-  
-  \If{ $RE_j \geq E_{R}$ }{
-      \emph{$s_j.status$ = COMMUNICATION}\;
-      \emph{Send $INFO()$ packet to other nodes in the subregion}\;
-      \emph{Wait $INFO()$ packet from other nodes in the subregion}\; 
-      %\emph{UPDATE $RE_j$ for every sent or received INFO Packet}\;
-      %\emph{ Collect information and construct the list L for all nodes in the subregion}\;
-      
-      %\If{ the received INFO Packet = No. of nodes in it's subregion -1  }{
-      \emph{LeaderID = Leader election}\;
-      \If{$ s_j.ID = LeaderID $}{
-        \emph{$s_j.status$ = COMPUTATION}\;
-        \emph{$\left\{\left(X_{1,k},\dots,X_{T,k}\right)\right\}_{k \in J}$ =
-          Execute \textcolor{red}{Optimization Algorithm}($T,J$)}\;
-        \emph{$s_j.status$ = COMMUNICATION}\;
-        \emph{Send $ActiveSleep()$ to each node $k$ in subregion a packet \\
-          with vector of activity scheduling $(X_{1,k},\dots,X_{T,k})$}\;
-        \emph{Update $RE_j $}\;
-      }          
-      \Else{
-        \emph{$s_j.status$ = LISTENING}\;
-        \emph{Wait $ActiveSleep()$ packet from the Leader}\;
-        % \emph{After receiving Packet, Retrieve the schedule and the $T$ rounds}\;
-        \emph{Update $RE_j $}\;
-      }  
-      %  }
-  }
-  \Else { Exclude $s_j$ from entering in the current sensing phase}
-  
- %   \emph{return X} \;
-\caption{MuDiLCO($s_j$)}
-\label{alg:MuDiLCO}
+%solve  an integer  program
 
 
-\end{algorithm}
 
 
 
 
 
 
 
 
 
 
 
 
-\section{\textcolor{red}{ Optimization Algorithm for Multiround Lifetime Coverage Optimization}}
-\label{oa}
+%\section{\textcolor{red}{ Optimization Algorithm for Multiround Lifetime Coverage Optimization}}
+%\label{oa}
 As shown in Algorithm~\ref{alg:MuDiLCO}, the leader will execute an optimization algorithm based on an integer program. The  integer program  is based on  the model
 proposed by  \cite{pedraza2006} with some modifications, where  the objective is
 to find  a maximum  number of disjoint  cover sets.   To fulfill this  goal, the
 As shown in Algorithm~\ref{alg:MuDiLCO}, the leader will execute an optimization algorithm based on an integer program. The  integer program  is based on  the model
 proposed by  \cite{pedraza2006} with some modifications, where  the objective is
 to find  a maximum  number of disjoint  cover sets.   To fulfill this  goal, the
@@ -791,7 +820,7 @@ Subject to
 \end{equation}
 
 \begin{equation}
 \end{equation}
 
 \begin{equation}
-  \sum_{t=1}^{T}  X_{t,j}   \leq  \floor*{RE_{j}/E_{R}} \hspace{6 mm} \forall j \in J, t = 1,\dots,T
+  \sum_{t=1}^{T}  X_{t,j}   \leq  \floor*{RE_{j}/E_{R}} \hspace{10 mm}\forall j \in J\hspace{6 mm} 
   \label{eq144} 
 \end{equation}
 
   \label{eq144} 
 \end{equation}
 
@@ -839,16 +868,70 @@ to guarantee that the maximum number of points are covered during each round.
 %% MS W_theta is smaller than W_u => problem with the following sentence
 In our simulations priority is given  to the coverage by choosing $W_{U}$ very
 large compared to $W_{\theta}$.
 %% MS W_theta is smaller than W_u => problem with the following sentence
 In our simulations priority is given  to the coverage by choosing $W_{U}$ very
 large compared to $W_{\theta}$.
+
+\textcolor{blue}{The size of the problem depends on the number of variables and constraints. The number of variables is linked to the number of alive sensors $A \subset J$, the number of rounds $T$, and the number of primary points $P$. Thus the integer program contains $A*T$ variables of type $X_{t,j}$, $P*T$ overcoverage variables and $P*T$ undercoverage variables. The number of constraints is equal to $P*T$ (for constraints (\ref{eq16})) $+$ $A$ (for constraints (\ref{eq144})).}
 %The Active-Sleep packet includes the schedule vector with the number of rounds that should be applied by the receiving sensor node during the sensing phase.
 
 %The Active-Sleep packet includes the schedule vector with the number of rounds that should be applied by the receiving sensor node during the sensing phase.
 
+
+\subsection{Sensing phase}
+
+The sensing phase consists of $T$ rounds. Each sensor node in the subregion will
+receive an Active-Sleep packet from WSNL, informing it to stay awake or to go to
+sleep for each round of the sensing  phase.  Algorithm~\ref{alg:MuDiLCO}, which
+will be  executed by each node  at the beginning  of a period, explains  how the
+Active-Sleep packet is obtained.
+
+% In each round during the sensing phase, there is a cover set of sensor nodes,  in which  the active  sensors will  execute  their sensing  task  to preserve maximal  coverage and lifetime in the subregion and this will continue until finishing the round $T$ and starting new period. 
+
+\begin{algorithm}[h!]                
+ % \KwIn{all the parameters related to information exchange}
+%  \KwOut{$winer-node$ (: the id of the winner sensor node, which is the leader of current round)}
+  \BlankLine
+  %\emph{Initialize the sensor node and determine it's position and subregion} \; 
+  
+  \If{ $RE_j \geq E_{R}$ }{
+      \emph{$s_j.status$ = COMMUNICATION}\;
+      \emph{Send $INFO()$ packet to other nodes in the subregion}\;
+      \emph{Wait $INFO()$ packet from other nodes in the subregion}\; 
+      %\emph{UPDATE $RE_j$ for every sent or received INFO Packet}\;
+      %\emph{ Collect information and construct the list L for all nodes in the subregion}\;
+      
+      %\If{ the received INFO Packet = No. of nodes in it's subregion -1  }{
+      \emph{LeaderID = Leader election}\;
+      \If{$ s_j.ID = LeaderID $}{
+        \emph{$s_j.status$ = COMPUTATION}\;
+        \emph{$\left\{\left(X_{1,k},\dots,X_{T,k}\right)\right\}_{k \in J}$ =
+          Execute \textcolor{red}{Optimization Algorithm}($T,J$)}\;
+        \emph{$s_j.status$ = COMMUNICATION}\;
+        \emph{Send $ActiveSleep()$ to each node $k$ in subregion a packet \\
+          with vector of activity scheduling $(X_{1,k},\dots,X_{T,k})$}\;
+        \emph{Update $RE_j $}\;
+      }          
+      \Else{
+        \emph{$s_j.status$ = LISTENING}\;
+        \emph{Wait $ActiveSleep()$ packet from the Leader}\;
+        % \emph{After receiving Packet, Retrieve the schedule and the $T$ rounds}\;
+        \emph{Update $RE_j $}\;
+      }  
+      %  }
+  }
+  \Else { Exclude $s_j$ from entering in the current sensing phase}
+  
+ %   \emph{return X} \;
+\caption{MuDiLCO($s_j$)}
+\label{alg:MuDiLCO}
+
+\end{algorithm}
+
+\iffalse
 \textcolor{red}{This integer program can be solved using two approaches:}
 
 \subsection{\textcolor{red}{Optimization solver for Multiround Lifetime Coverage Optimization}}
 \label{glpk}
 \textcolor{red}{The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is  employed to generate the integer program instance  in a  standard format, which  is then read  and solved  by the optimization solver  GLPK (GNU  linear Programming Kit  available in  the public domain) \cite{glpk} through a Branch-and-Bound method. We named the protocol which is based on GLPK solver in the decision phase as MuDiLCO.}
 \textcolor{red}{This integer program can be solved using two approaches:}
 
 \subsection{\textcolor{red}{Optimization solver for Multiround Lifetime Coverage Optimization}}
 \label{glpk}
 \textcolor{red}{The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is  employed to generate the integer program instance  in a  standard format, which  is then read  and solved  by the optimization solver  GLPK (GNU  linear Programming Kit  available in  the public domain) \cite{glpk} through a Branch-and-Bound method. We named the protocol which is based on GLPK solver in the decision phase as MuDiLCO.}
+\fi
 
 
-
-
+\iffalse
 
 \subsection{\textcolor{red}{Genetic Algorithm for Multiround Lifetime Coverage Optimization}}
 \label{GA}
 
 \subsection{\textcolor{red}{Genetic Algorithm for Multiround Lifetime Coverage Optimization}}
 \label{GA}
@@ -1006,7 +1089,7 @@ The proposed GA-MuDiLCO stops when the stopping criteria is met. It stops after
 
 \end{enumerate} 
 
 
 \end{enumerate} 
 
-
+\fi
 
 \section{Experimental study}
 \label{exp}
 
 \section{Experimental study}
 \label{exp}
@@ -1059,19 +1142,46 @@ $W_{\theta}$ & 1   \\
 % [1ex] adds vertical space
 %\hline
 $W_{U}$ & $|P|^2$ \\
 % [1ex] adds vertical space
 %\hline
 $W_{U}$ & $|P|^2$ \\
-$P_c$ & 0.95   \\ 
-$P_m$ & 0.6 \\
-$S_{pop}$ & 50
+%$P_c$ & 0.95   \\ 
+%$P_m$ & 0.6 \\
+%$S_{pop}$ & 50
 %inserts single line
 \end{tabular}
 \label{table3}
 % is used to refer this table in the text
 \end{table}
 %inserts single line
 \end{tabular}
 \label{table3}
 % is used to refer this table in the text
 \end{table}
-  
-\textcolor{red}{Our first protocol based GLPK optimization solver is declined into  four versions: MuDiLCO-1,  MuDiLCO-3, MuDiLCO-5,
-and  MuDiLCO-7, corresponding  respectively to  $T=1,3,5,7$ ($T$  the  number of
-rounds in one sensing period). The second protocol based GA is declined into  four versions: GA-MuDiLCO-1,  GA-MuDiLCO-3, GA-MuDiLCO-5,
-and  GA-MuDiLCO-7 for the same reason of the first protocol. After extensive experiments, we chose the dedicated values for the parameters $P_c$, $P_m$, and $S_{pop}$ because they gave the best results}.  In  the following, we will make comparisons with
+
+\textcolor{blue}{The MuDilLCO protocol is declined into  four versions: MuDiLCO-1,  MuDiLCO-3, MuDiLCO-5,
+and  MuDiLCO-7, corresponding  respectively to  $T=1,3,5,7$ ($T$  the  number of rounds in one sensing period). Since the time resolution may be prohibitif when the size of the problem increases, a time limit treshold  has been fixed to solve large instances.  In these cases, the solver returns the best solution found, which is not necessary the optimal solution.
+ Table \ref{tl} shows time limit values. These time limit treshold have been set empirically. The basic idea consists in considering the average execution time to solve the integer programs  to optimality, then by dividing  this average time by three to set the threshold value. After that, this treshold value is increased if necessary such that the solver is able to deliver a feasible solution within the time limit. In fact, selecting the optimal values for the time limits will be investigated in future. In Table \ref{tl}, "NO" indicates that the problem has been solved to optimality without time limit. }. 
+
+\begin{table}[ht]
+\caption{Time limit values for MuDiLCO protocol versions }
+\centering
+\begin{tabular}{|c|c|c|c|c|}
+ \hline
+ WSN size & MuDiLCO-1 & MuDiLCO-3 & MuDiLCO-5 & MuDiLCO-7 \\ [0.5ex]
+\hline
+ 50 & NO & NO & NO & NO \\
+ \hline
+100 & NO & NO & NO & NO \\
+\hline
+150 & NO & NO & NO & 0.03 \\
+\hline
+200 & NO & NO & NO & 0.06 \\
+ \hline
+ 250 & NO & NO & NO & 0.08 \\
+ \hline
+\end{tabular}
+
+\label{tl}
+
+\end{table}
+
+
+
+
+ In  the following, we will make comparisons with
 two other methods. The first method, called DESK and proposed by \cite{ChinhVu},
 is  a   full  distributed  coverage   algorithm.   The  second   method,  called
 GAF~\cite{xu2001geography}, consists in dividing  the region into fixed squares.
 two other methods. The first method, called DESK and proposed by \cite{ChinhVu},
 is  a   full  distributed  coverage   algorithm.   The  second   method,  called
 GAF~\cite{xu2001geography}, consists in dividing  the region into fixed squares.
@@ -1257,6 +1367,53 @@ indicate the energy consumed by the whole network in round $t$.
 
 \end{enumerate}
 
 
 \end{enumerate}
 
+\subsection{Performance analysis for different number of primary points}
+\label{ch4:sec:04:06}
+
+In this section, we study the performance of MuDiLCO-1 approach for different numbers of primary points. The objective of this comparison is to select the suitable primary point model to be used by a MuDiLCO protocol. In this comparison, MuDiLCO-1 protocol is used with five models, which are called Model-5 (it uses 5 primary points), Model-9, Model-13, Model-17, and Model-21. 
+
+
+%\begin{enumerate}[i)]
+
+%\item {{\bf Coverage Ratio}}
+\subsubsection{Coverage ratio} 
+
+Figure~\ref{Figures/ch4/R2/CR} shows the average coverage ratio for 150 deployed nodes.  
+\parskip 0pt    
+\begin{figure}[h!]
+\centering
+ \includegraphics[scale=0.5] {R2/CR.pdf} 
+\caption{Coverage ratio for 150 deployed nodes}
+\label{Figures/ch4/R2/CR}
+\end{figure} 
+As can be seen in Figure~\ref{Figures/ch4/R2/CR}, at the beginning the models which use a larger number of primary points provide slightly better coverage ratios, but latter they are the worst. 
+%Moreover, when the number of periods increases, coverage ratio produced by Model-9, Model-13, Model-17, and Model-21 decreases in comparison with Model-5 due to a larger time computation for the decision process for larger number of primary points.
+Moreover, when the number of periods increases, coverage ratio produced by all models decrease, but Model-5 is the one with the slowest decrease due to a smaller time computation of decision process for a smaller number of primary points. 
+As shown in Figure ~\ref{Figures/ch4/R2/CR}, coverage ratio decreases when the number of periods increases due to dead nodes. Model-5 is slightly more efficient than other models, because it offers a good coverage ratio for a larger number of periods in comparison with other models.
+
+
+%\item {{\bf Network Lifetime}}
+\subsubsection{Network lifetime}
+
+Finally, we study the effect of increasing the primary points on the lifetime of the network. 
+%In Figure~\ref{Figures/ch4/R2/LT95} and in Figure~\ref{Figures/ch4/R2/LT50}, network lifetime, $Lifetime95$ and $Lifetime50$ respectively, are illustrated for different network sizes. 
+As highlighted by Figures~\ref{Figures/ch4/R2/LT}(a) and \ref{Figures/ch4/R2/LT}(b), the network lifetime obviously increases when the size of the network increases, with  Model-5 that leads to the larger lifetime improvement. 
+
+\begin{figure}[h!]
+\centering
+\centering
+\includegraphics[scale=0.5]{R2/LT95.pdf}\\~ ~ ~ ~ ~(a) \\
+
+\includegraphics[scale=0.5]{R2/LT50.pdf}\\~ ~ ~ ~ ~(b)
+
+\caption{Network lifetime for (a) $Lifetime_{95}$ and (b) $Lifetime_{50}$}
+  \label{Figures/ch4/R2/LT}
+\end{figure}
+
+Comparison shows that Model-5, which uses less number of primary points, is the best one because it is less energy consuming during the network lifetime. It is also the better one from the point of view of coverage ratio. Our proposed Model-5 efficiently prolongs the network lifetime with a good coverage ratio in comparison with other models. Therefore, we have chosen the model with five primary points for all the experiments presented thereafter. 
+
+%\end{enumerate}
+
 \subsection{Results and analysis}
 
 \subsubsection{Coverage ratio} 
 \subsection{Results and analysis}
 
 \subsubsection{Coverage ratio} 
@@ -1280,16 +1437,17 @@ rounds, and thus should extend the network lifetime.
 
 \begin{figure}[ht!]
 \centering
 
 \begin{figure}[ht!]
 \centering
- \includegraphics[scale=0.5] {R/CR.pdf} 
+ \includegraphics[scale=0.5] {F/CR.pdf} 
 \caption{Average coverage ratio for 150 deployed nodes}
 \label{fig3}
 \end{figure} 
 
 \caption{Average coverage ratio for 150 deployed nodes}
 \label{fig3}
 \end{figure} 
 
+\iffalse
 \textcolor{red}{ We
 can see that for the first thirty nine rounds GA-MuDiLCO provides a little bit better coverage ratio  than MuDiLCO. Both DESK and GAF provide a coverage
 which is a little bit better than the one of MuDiLCO and GA-MuDiLCO for the first thirty rounds because they activate a larger number of nodes during sensing phase. After that GA-MuDiLCO provides a coverage ratio near to the  MuDiLCO and better than DESK and GAF. GA-MuDiLCO gives approximate solution with activation a larger number of nodes than MuDiLCO during sensing phase while it activates a less number of nodes in comparison with both DESK and GAF. MuDiLCO and GA-MuDiLCO clearly outperform DESK and GAF for
 a number of periods between 31 and 103. This is because they optimize the coverage and the lifetime in a wireless sensor network by selecting the best representative sensor nodes to take the responsibility of coverage during the sensing phase.}
 \textcolor{red}{ We
 can see that for the first thirty nine rounds GA-MuDiLCO provides a little bit better coverage ratio  than MuDiLCO. Both DESK and GAF provide a coverage
 which is a little bit better than the one of MuDiLCO and GA-MuDiLCO for the first thirty rounds because they activate a larger number of nodes during sensing phase. After that GA-MuDiLCO provides a coverage ratio near to the  MuDiLCO and better than DESK and GAF. GA-MuDiLCO gives approximate solution with activation a larger number of nodes than MuDiLCO during sensing phase while it activates a less number of nodes in comparison with both DESK and GAF. MuDiLCO and GA-MuDiLCO clearly outperform DESK and GAF for
 a number of periods between 31 and 103. This is because they optimize the coverage and the lifetime in a wireless sensor network by selecting the best representative sensor nodes to take the responsibility of coverage during the sensing phase.}
-
+\fi
 
 
 \subsubsection{Active sensors ratio} 
 
 
 \subsubsection{Active sensors ratio} 
@@ -1298,12 +1456,14 @@ It is crucial to have as few active nodes as possible in each round, in order to
 minimize the communication overhead and maximize    the network lifetime. Figure~\ref{fig4}  presents the active  sensor ratio for  150 deployed
 nodes all along the network lifetime. It appears that up to round thirteen, DESK
 and GAF have  respectively 37.6\% and 44.8\% of nodes  in ACTIVE status, whereas
 minimize the communication overhead and maximize    the network lifetime. Figure~\ref{fig4}  presents the active  sensor ratio for  150 deployed
 nodes all along the network lifetime. It appears that up to round thirteen, DESK
 and GAF have  respectively 37.6\% and 44.8\% of nodes  in ACTIVE status, whereas
-MuDiLCO clearly outperforms them  with only 24.8\%  of active nodes. \textcolor{red}{GA-MuDiLCO activates a number of sensor nodes larger than MuDiLCO but lower than both DESK and GAF. GA-MuDiLCO-1, GA-MuDiLCO-3, and GA-MuDiLCO-5 continue in providing a larger number of active sensors until the forty-sixth round after that it provides less number of active nodes due to the died nodes. GA-MuDiLCO-7 provides a larger number of sensor nodes and maintains a better coverage ratio compared to MuDiLCO-7 until the fifty-seventh round.  After the thirty-fifth round, MuDiLCO exhibits larger numbers of active nodes compared with DESK  and GAF, which agrees with  the  dual  observation  of  higher  level  of  coverage  made  previously}.
-Obviously, in that case DESK  and GAF have less active nodes, since  they have activated many nodes  at the beginning. Anyway, MuDiLCO  activates the available nodes in a more efficient manner. \textcolor{red}{GA-MuDiLCO activates near optimal number of sensor nodes also in efficient manner compared with both DESK  and GAF}.
+MuDiLCO clearly outperforms them  with only 24.8\%  of active nodes. 
+%\textcolor{red}{GA-MuDiLCO activates a number of sensor nodes larger than MuDiLCO but lower than both DESK and GAF. GA-MuDiLCO-1, GA-MuDiLCO-3, and GA-MuDiLCO-5 continue in providing a larger number of active sensors until the forty-sixth round after that it provides less number of active nodes due to the died nodes. GA-MuDiLCO-7 provides a larger number of sensor nodes and maintains a better coverage ratio compared to MuDiLCO-7 until the fifty-seventh round.  After the thirty-fifth round, MuDiLCO exhibits larger numbers of active nodes compared with DESK  and GAF, which agrees with  the  dual  observation  of  higher  level  of  coverage  made  previously}.
+Obviously, in that case DESK  and GAF have less active nodes, since  they have activated many nodes  at the beginning. Anyway, MuDiLCO  activates the available nodes in a more efficient manner. 
+%\textcolor{red}{GA-MuDiLCO activates near optimal number of sensor nodes also in efficient manner compared with both DESK  and GAF}.
 
 \begin{figure}[ht!]
 \centering
 
 \begin{figure}[ht!]
 \centering
-\includegraphics[scale=0.5]{R/ASR.pdf}  
+\includegraphics[scale=0.5]{F/ASR.pdf}  
 \caption{Active sensors ratio for 150 deployed nodes}
 \label{fig4}
 \end{figure} 
 \caption{Active sensors ratio for 150 deployed nodes}
 \label{fig4}
 \end{figure} 
@@ -1318,15 +1478,16 @@ Obviously, in that case DESK  and GAF have less active nodes, since  they have a
 Figure~\ref{fig6} reports the cumulative  percentage of stopped simulations runs
 per round for  150 deployed nodes. This figure gives the  breakpoint for each method.  DESK stops first,  after approximately 45~rounds, because it consumes the
 more energy by  turning on a large number of redundant  nodes during the sensing
 Figure~\ref{fig6} reports the cumulative  percentage of stopped simulations runs
 per round for  150 deployed nodes. This figure gives the  breakpoint for each method.  DESK stops first,  after approximately 45~rounds, because it consumes the
 more energy by  turning on a large number of redundant  nodes during the sensing
-phase. GAF  stops secondly for the  same reason than  DESK. \textcolor{red}{GA-MuDiLCO  stops thirdly for the  same reason than  DESK and GAF.} \textcolor{red}{MuDiLCO and GA-MuDiLCO overcome}
-DESK and GAF because \textcolor{red}{they activate less number of sensor nodes, as well as }the optimization process distributed on several subregions leads to coverage  preservation and  so extends  the network  lifetime.  
+phase. GAF  stops secondly for the  same reason than  DESK. 
+%\textcolor{red}{GA-MuDiLCO  stops thirdly for the  same reason than  DESK and GAF.} \textcolor{red}{MuDiLCO and GA-MuDiLCO overcome}
+%DESK and GAF because \textcolor{red}{they activate less number of sensor nodes, as well as }the optimization process distributed on several subregions leads to coverage  preservation and  so extends  the network  lifetime.  
 Let us emphasize that the  simulation continues as long as a network  in a subregion is still connected. 
 
 %%% The optimization effectively continues as long as a network in a subregion is still connected. A VOIR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 \begin{figure}[ht!]
 \centering
 Let us emphasize that the  simulation continues as long as a network  in a subregion is still connected. 
 
 %%% The optimization effectively continues as long as a network in a subregion is still connected. A VOIR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 \begin{figure}[ht!]
 \centering
-\includegraphics[scale=0.5]{R/SR.pdf} 
+\includegraphics[scale=0.5]{F/SR.pdf} 
 \caption{Cumulative percentage of stopped simulation runs for 150 deployed nodes }
 \label{fig6}
 \end{figure} 
 \caption{Cumulative percentage of stopped simulation runs for 150 deployed nodes }
 \label{fig6}
 \end{figure} 
@@ -1342,9 +1503,9 @@ network sizes, for $Lifetime_{95}$ and $Lifetime_{50}$.
 \begin{figure}[h!]
   \centering
   \begin{tabular}{cl}
 \begin{figure}[h!]
   \centering
   \begin{tabular}{cl}
-    \parbox{9.5cm}{\includegraphics[scale=0.5]{R/EC95.pdf}} & (a) \\
+    \parbox{9.5cm}{\includegraphics[scale=0.5]{F/EC95.pdf}} & (a) \\
     \verb+ + \\
     \verb+ + \\
-    \parbox{9.5cm}{\includegraphics[scale=0.5]{R/EC50.pdf}} & (b)
+    \parbox{9.5cm}{\includegraphics[scale=0.5]{F/EC50.pdf}} & (b)
   \end{tabular}
   \caption{Energy consumption for (a) $Lifetime_{95}$ and 
     (b) $Lifetime_{50}$}
   \end{tabular}
   \caption{Energy consumption for (a) $Lifetime_{95}$ and 
     (b) $Lifetime_{50}$}
@@ -1353,16 +1514,17 @@ network sizes, for $Lifetime_{95}$ and $Lifetime_{50}$.
 
 The  results  show  that  MuDiLCO  is  the  most  competitive  from  the  energy
 consumption point of view.  The  other approaches have a high energy consumption
 
 The  results  show  that  MuDiLCO  is  the  most  competitive  from  the  energy
 consumption point of view.  The  other approaches have a high energy consumption
-due  to activating a  larger number  of redundant  nodes as  well as  the energy consumed during  the different  status of the  sensor node. Among  the different versions of our protocol, the MuDiLCO-7  one consumes more energy than the other
-versions. This is  easy to understand since the bigger the  number of rounds and the number of  sensors involved in the integer program are,  the larger the time computation to solve the optimization problem is. To improve the performances of MuDiLCO-7, we  should increase the  number of subregions  in order to  have less sensors to consider in the integer program.
-\textcolor{red}{As shown in Figure~\ref{fig7}, GA-MuDiLCO consumes less energy than both DESK and GAF, but a little bit higher than MuDiLCO  because it provides a near optimal solution by activating a larger number of nodes during the sensing phase.  GA-MuDiLCO consumes less energy in comparison with MuDiLCO-7 version, especially for the dense networks. However, MuDiLCO protocol and GA-MuDiLCO protocol are the most competitive from the energy
-consumption point of view. The other approaches have a high energy consumption
-due to activating a larger number of redundant nodes.}
+due  to activating a  larger number  of redundant  nodes as  well as  the energy consumed during  the different  status of the  sensor node.
+% Among  the different versions of our protocol, the MuDiLCO-7  one consumes more energy than the other
+%versions. This is  easy to understand since the bigger the  number of rounds and the number of  sensors involved in the integer program are,  the larger the time computation to solve the optimization problem is. To improve the performances of MuDiLCO-7, we  should increase the  number of subregions  in order to  have less sensors to consider in the integer program.
+%\textcolor{red}{As shown in Figure~\ref{fig7}, GA-MuDiLCO consumes less energy than both DESK and GAF, but a little bit higher than MuDiLCO  because it provides a near optimal solution by activating a larger number of nodes during the sensing phase.  GA-MuDiLCO consumes less energy in comparison with MuDiLCO-7 version, especially for the dense networks. However, MuDiLCO protocol and GA-MuDiLCO protocol are the most competitive from the energy
+%consumption point of view. The other approaches have a high energy consumption
+%due to activating a larger number of redundant nodes.}
 %In fact,  a distributed optimization decision, which produces T rounds, on the subregions is  greatly reduced the cost of communications and the time of listening as well as the energy needed for sensing phase and computation so thanks to the partitioning of the initial network into several independent subnetworks and producing T rounds for each subregion periodically. 
 
 
 \subsubsection{Execution time}
 %In fact,  a distributed optimization decision, which produces T rounds, on the subregions is  greatly reduced the cost of communications and the time of listening as well as the energy needed for sensing phase and computation so thanks to the partitioning of the initial network into several independent subnetworks and producing T rounds for each subregion periodically. 
 
 
 \subsubsection{Execution time}
-
+\label{et}
 We observe  the impact of the  network size and of  the number of  rounds on the
 computation  time.   Figure~\ref{fig77} gives  the  average  execution times  in
 seconds (needed to solve optimization problem) for different values of $T$. The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is  employed to generate the Mixed Integer Linear Program instance  in a  standard format, which  is then read  and solved  by the optimization solver  GLPK (GNU  linear Programming Kit  available in  the public domain) \cite{glpk} through a Branch-and-Bound method. The
 We observe  the impact of the  network size and of  the number of  rounds on the
 computation  time.   Figure~\ref{fig77} gives  the  average  execution times  in
 seconds (needed to solve optimization problem) for different values of $T$. The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is  employed to generate the Mixed Integer Linear Program instance  in a  standard format, which  is then read  and solved  by the optimization solver  GLPK (GNU  linear Programming Kit  available in  the public domain) \cite{glpk} through a Branch-and-Bound method. The
@@ -1376,7 +1538,7 @@ for different network sizes.
 
 \begin{figure}[ht!]
 \centering
 
 \begin{figure}[ht!]
 \centering
-\includegraphics[scale=0.5]{R/T.pdf}  
+\includegraphics[scale=0.5]{F/T.pdf}  
 \caption{Execution Time (in seconds)}
 \label{fig77}
 \end{figure} 
 \caption{Execution Time (in seconds)}
 \label{fig77}
 \end{figure} 
@@ -1409,14 +1571,15 @@ of  $Lifetime_{95}$  with  large  wireless  sensor  networks  results  from  the
 difficulty  of the optimization  problem to  be solved  by the  integer program.
 This  point was  already noticed  in subsection  \ref{subsec:EC} devoted  to the
 energy consumption,  since network lifetime and energy  consumption are directly
 difficulty  of the optimization  problem to  be solved  by the  integer program.
 This  point was  already noticed  in subsection  \ref{subsec:EC} devoted  to the
 energy consumption,  since network lifetime and energy  consumption are directly
-linked. \textcolor{red}{As can be seen in these figures, the lifetime increases with the size of the network, and it is clearly largest for the MuDiLCO
-and the GA-MuDiLCO protocols. GA-MuDiLCO prolongs the network lifetime obviously in comparison with both DESK and GAF, as well as the MuDiLCO-7 version for $lifetime_{95}$.  However, comparison shows that MuDiLCO protocol and GA-MuDiLCO protocol, which use distributed optimization over the subregions are the best ones because they are robust to network disconnection during the network lifetime as well as they consume less energy in comparison with other approaches.}
+linked. 
+%\textcolor{red}{As can be seen in these figures, the lifetime increases with the size of the network, and it is clearly largest for the MuDiLCO
+%and the GA-MuDiLCO protocols. GA-MuDiLCO prolongs the network lifetime obviously in comparison with both DESK and GAF, as well as the MuDiLCO-7 version for $lifetime_{95}$.  However, comparison shows that MuDiLCO protocol and GA-MuDiLCO protocol, which use distributed optimization over the subregions are the best ones because they are robust to network disconnection during the network lifetime as well as they consume less energy in comparison with other approaches.}
 \begin{figure}[t!]
   \centering
   \begin{tabular}{cl}
 \begin{figure}[t!]
   \centering
   \begin{tabular}{cl}
-    \parbox{9.5cm}{\includegraphics[scale=0.5]{R/LT95.pdf}} & (a) \\
+    \parbox{9.5cm}{\includegraphics[scale=0.5]{F/LT95.pdf}} & (a) \\
     \verb+ + \\
     \verb+ + \\
-    \parbox{9.5cm}{\includegraphics[scale=0.5]{R/LT50.pdf}} & (b)
+    \parbox{9.5cm}{\includegraphics[scale=0.5]{F/LT50.pdf}} & (b)
   \end{tabular}
   \caption{Network lifetime for (a) $Lifetime_{95}$ and 
     (b) $Lifetime_{50}$}
   \end{tabular}
   \caption{Network lifetime for (a) $Lifetime_{95}$ and 
     (b) $Lifetime_{50}$}