]> AND Private Git Repository - JournalMultiPeriods.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ok
authorKarine Deschinkel <kdeschin@grappa.iut-bm.univ-fcomte.fr>
Tue, 25 Aug 2015 09:53:42 +0000 (11:53 +0200)
committerKarine Deschinkel <kdeschin@grappa.iut-bm.univ-fcomte.fr>
Tue, 25 Aug 2015 09:53:42 +0000 (11:53 +0200)
article.tex
biblio.bib

index 6c85d0c5c1477b27efce79d93c6a130f289dcfc8..9f77e5905e325ada281e1676219bec034a2054c1 100644 (file)
@@ -106,9 +106,14 @@ divided  into subregions and  then the  MuDiLCO protocol  is distributed  on the
 sensor nodes in each subregion. The proposed MuDiLCO protocol works in periods
 during which sets of sensor nodes are scheduled to remain active for a number of
 rounds  during the  sensing phase,  to  ensure coverage  so as  to maximize  the
 sensor nodes in each subregion. The proposed MuDiLCO protocol works in periods
 during which sets of sensor nodes are scheduled to remain active for a number of
 rounds  during the  sensing phase,  to  ensure coverage  so as  to maximize  the
-lifetime of  WSN.  The decision process is  carried out by a  leader node, which
-solves an  integer program to  produce the best  representative sets to  be used
-during the rounds  of the sensing phase. \textcolor{red}{The integer program is solved by either GLPK solver or Genetic Algorithm (GA)}. Compared  with some existing protocols,
+lifetime of  WSN. \textcolor{green}{The decision process is  carried out by a  leader node, which
+solves an optimization problem to  produce the best  representative sets to  be used
+during the rounds  of the sensing phase. The optimization problem formulated as an integer program is solved either to optimality through a branch-and-Bound method or to near-optimality using a genetic algorithm-based heuristic. }
+%The decision process is  carried out by a  leader node, which
+%solves an  integer program to  produce the best  representative sets to  be used
+%during the rounds  of the sensing phase. 
+%\textcolor{red}{The integer program is solved by either GLPK solver or Genetic Algorithm (GA)}. 
+Compared  with some existing protocols,
 simulation  results based  on  multiple criteria  (energy consumption,  coverage
 ratio, and  so on) show that  the proposed protocol can  prolong efficiently the
 network lifetime and improve the coverage performance.
 simulation  results based  on  multiple criteria  (energy consumption,  coverage
 ratio, and  so on) show that  the proposed protocol can  prolong efficiently the
 network lifetime and improve the coverage performance.
@@ -183,7 +188,7 @@ algorithms in WSNs according to several design choices:
 \item  Sensors   scheduling  algorithm  implementation,   i.e.   centralized  or
   distributed/localized algorithms.
 \item The objective of sensor coverage, i.e. to maximize the network lifetime or
 \item  Sensors   scheduling  algorithm  implementation,   i.e.   centralized  or
   distributed/localized algorithms.
 \item The objective of sensor coverage, i.e. to maximize the network lifetime or
-  to minimize the number of sensors during a sensing round.
+  to minimize the number of active sensors during a sensing round.
 \item The homogeneous or heterogeneous nature  of the nodes, in terms of sensing
   or communication capabilities.
 \item The node deployment method, which may be random or deterministic.
 \item The homogeneous or heterogeneous nature  of the nodes, in terms of sensing
   or communication capabilities.
 \item The node deployment method, which may be random or deterministic.
@@ -204,9 +209,11 @@ network. Note that  centralized algorithms have the advantage  of requiring very
 low  processing  power  from  the  sensor  nodes,  which  usually  have  limited
 processing  capabilities. The  main drawback  of this  kind of  approach  is its
 higher cost in communications, since the  node that will make the decision needs
 low  processing  power  from  the  sensor  nodes,  which  usually  have  limited
 processing  capabilities. The  main drawback  of this  kind of  approach  is its
 higher cost in communications, since the  node that will make the decision needs
-information from all the  sensor nodes. \textcolor{red} {Exact or heuristics approaches are designed to provide cover sets. (Moreover, centralized approaches usually
-suffer from the scalability problem, making them less competitive as the network
-size increases.) Contrary to exact methods, heuristic methods can handle very large and centralized problems. They are proposed to reduce computational overhead such as energy consumption, delay and generally increase in
+information from all the  sensor nodes. \textcolor{green} {Exact or heuristics approaches are designed to provide cover sets.
+ %(Moreover, centralized approaches usually
+%suffer from the scalability problem, making them less competitive as the network
+%size increases.) 
+Contrary to exact methods, heuristic methods can handle very large and centralized problems. They are proposed to reduce computational overhead such as energy consumption, delay and generally increase in
 the network lifetime. }
 
 The first algorithms proposed in the literature consider that the cover sets are
 the network lifetime. }
 
 The first algorithms proposed in the literature consider that the cover sets are
@@ -232,7 +239,8 @@ node.   After that,  they  proposed a  High  Residual Energy  First (HREF)  node
 selection algorithm to minimize the number  of active nodes so as to prolong the
 network  lifetime.  Various  centralized  methods  based  on  column  generation
 approaches                    have                   also                   been
 selection algorithm to minimize the number  of active nodes so as to prolong the
 network  lifetime.  Various  centralized  methods  based  on  column  generation
 approaches                    have                   also                   been
-proposed~\cite{castano2013column,rossi2012exact,deschinkel2012column}.
+proposed~\cite{gentili2013,castano2013column,rossi2012exact,deschinkel2012column}. 
+\textcolor{green}{In~\cite{gentili2013}, authors highlight the trade-off between the network lifetime and the coverage percentage. They show that network lifetime can be hugely improved by decreasing the coverage ratio. }
 
 \subsection{Distributed approaches}
 %{\bf Distributed approaches}
 
 \subsection{Distributed approaches}
 %{\bf Distributed approaches}
@@ -297,7 +305,8 @@ computation complexity. Compared to our previous paper, in this one we study the
 possibility of dividing  the sensing phase into multiple rounds  and we also add
 an  improved  model  of energy  consumption  to  assess  the efficiency  of  our
 approach. In fact, in this paper we make a multiround optimization, while it was
 possibility of dividing  the sensing phase into multiple rounds  and we also add
 an  improved  model  of energy  consumption  to  assess  the efficiency  of  our
 approach. In fact, in this paper we make a multiround optimization, while it was
-a single round optimization in our previous work. \textcolor{red}{In addition, a metaheuristic based GA is proposed to solve our multiround optimization}.
+a single round optimization in our previous work. \textcolor{green}{The idea is to take advantage of the pre-sensing phase
+ to plan the sensor's activity for several rounds instead of one, thus saving energy. In addition, as the optimization problem has become more complex, a GA-based heuristic is proposed to solve it}.
 
 \iffalse
    
 
 \iffalse
    
index d61f37439b945aa95ae70663d2feda3adb77bc30..bed9b2fbac504def810b702c8ef94223c68cb011 100755 (executable)
@@ -525,4 +525,15 @@ ISSN={1536-1276},
   year={2012}
 }
 
   year={2012}
 }
 
+@article{gentili2013,
+year={2013},
+journal={Optimization Letters},
+volume={7},
+number={1},
+title={α-Coverage to extend network lifetime on wireless sensor networks},
+publisher={Springer-Verlag},
+author={Gentili, Monica and Raiconi, Andrea},
+pages={157-172},
+}
+