]> AND Private Git Repository - JournalMultiPeriods.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
New comments for the figures
authorMichel Salomon <michel.salomon@univ-fcomte.fr>
Mon, 21 Sep 2015 08:55:58 +0000 (10:55 +0200)
committerMichel Salomon <michel.salomon@univ-fcomte.fr>
Mon, 21 Sep 2015 08:55:58 +0000 (10:55 +0200)
article.tex

index cbb393ca215bd19e4b2ad742bdab0ef28dc75c60..42d7890881781853ecf86df1d22cedb4ef44f272 100644 (file)
       of Babylon, Babylon, Iraq}} }
 
 \begin{abstract}
       of Babylon, Babylon, Iraq}} }
 
 \begin{abstract}
-%One of  the fundamental challenges in Wireless Sensor Networks (WSNs)
-%is the coverage preservation and the extension of the network lifetime
-%continuously  and  effectively  when  monitoring a  certain  area  (or
-%region) of  interest. 
 Coverage and  lifetime are  two paramount problems  in Wireless  Sensor Networks
 (WSNs). In this paper, a  method called Multiround Distributed Lifetime Coverage
 Optimization  protocol (MuDiLCO)  is proposed  to maintain  the coverage  and to
 Coverage and  lifetime are  two paramount problems  in Wireless  Sensor Networks
 (WSNs). In this paper, a  method called Multiround Distributed Lifetime Coverage
 Optimization  protocol (MuDiLCO)  is proposed  to maintain  the coverage  and to
@@ -109,11 +105,7 @@ as  to maximize  the  WSN lifetime.   \textcolor{blue}{The  decision process  is
   phase. The optimization problem formulated as  an integer program is solved to
   optimality through a Branch-and-Bound method  for small instances.  For larger
   instances, the best  feasible solution found by the solver  after a given time
   phase. The optimization problem formulated as  an integer program is solved to
   optimality through a Branch-and-Bound method  for small instances.  For larger
   instances, the best  feasible solution found by the solver  after a given time
-  limit threshold is considered.}
-%The decision process is  carried out by a  leader node, which
-%solves an  integer program to  produce the best  representative sets to  be used
-%during the rounds  of the sensing phase. 
-%\textcolor{red}{The integer program is solved by either GLPK solver or Genetic Algorithm (GA)}. 
+  limit threshold is considered.} 
 Compared  with some  existing protocols,  simulation results  based on  multiple
 criteria (energy consumption, coverage ratio, and  so on) show that the proposed
 protocol can prolong  efficiently the network lifetime and  improve the coverage
 Compared  with some  existing protocols,  simulation results  based on  multiple
 criteria (energy consumption, coverage ratio, and  so on) show that the proposed
 protocol can prolong  efficiently the network lifetime and  improve the coverage
@@ -150,32 +142,17 @@ regions to turn-off redundant sensor nodes  and thus save energy. In this paper,
 we concentrate  on the area coverage  problem, with the  objective of maximizing
 the network lifetime by using an optimized multiround scheduling.
 
 we concentrate  on the area coverage  problem, with the  objective of maximizing
 the network lifetime by using an optimized multiround scheduling.
 
-% One of the major scientific research challenges in WSNs, which are addressed by a large number of literature during the last few years is to design energy efficient approaches for coverage and connectivity in WSNs~\cite{conti2014mobile}. The coverage problem is one  of the
-%fundamental challenges in WSNs~\cite{Nayak04} that consists in monitoring efficiently and continuously
-%the area of interest. The limited energy of sensors represents the main challenge in the WSNs
-%design~\cite{Sudip03}, where it is difficult to replace and/or recharge their batteries because the the area of interest nature (such as hostile environments) and the cost. So, it is necessary that a WSN
-%deployed  with high  density because  spatial redundancy  can  then be exploited to increase  the lifetime of the network. However, turn on all the sensor nodes, which monitor the same region at the same time
-%leads to decrease the lifetime of the network. To extend the lifetime of the network, the main idea is to take advantage of the overlapping sensing regions  of some  sensor nodes to  save energy by  turning off
-%some  of them  during the  sensing phase~\cite{Misra05}. WSNs require energy-efficient solutions to improve the network lifetime that is constrained by the limited power of each sensor node ~\cite{Akyildiz02}. 
-
-%In this paper,  we concentrate on the area coverage  problem, with the objective
-%of maximizing the network lifetime by using an optimized multirounds scheduling.
-%The area of interest is divided into subregions.
-
-% Each period includes four phases starts with a discovery phase to exchange information among the sensors of the subregion, in order  to choose in a  suitable manner a sensor node as leader to carry out a coverage strategy.  This coverage strategy involves the solving of an integer program by the leader,  to optimize the coverage and the lifetime in the subregion by producing a sets of sensor nodes in order to take the mission of coverage preservation during several rounds in the sensing phase. In fact, the nodes in a subregion can be seen as a cluster where each node sends sensing data to the cluster head or the sink node. Furthermore, the activities in a subregion/cluster can continue even if another cluster stops due to too many node failures.  
-
 The remainder of the paper is organized as follows. The next section
 The remainder of the paper is organized as follows. The next section
-% Section~\ref{rw}
 reviews the  related works  in the  field.  Section~\ref{pd}  is devoted  to the
 reviews the  related works  in the  field.  Section~\ref{pd}  is devoted  to the
-description of MuDiLCO protocol.  Section~\ref{exp} shows the simulation results
+description of  MuDiLCO protocol. Section~\ref{exp} introduces  the experimental
+framework, it describes  the simulation setup and the different  metrics used to
+assess the  performances.  Section~\ref{analysis}  shows the  simulation results
 obtained using  the discrete event  simulator OMNeT++ \cite{varga}.   They fully
 demonstrate  the  usefulness  of  the   proposed  approach.   Finally,  we  give
 concluding    remarks   and    some    suggestions   for    future   works    in
 Section~\ref{sec:conclusion}.
 
 obtained using  the discrete event  simulator OMNeT++ \cite{varga}.   They fully
 demonstrate  the  usefulness  of  the   proposed  approach.   Finally,  we  give
 concluding    remarks   and    some    suggestions   for    future   works    in
 Section~\ref{sec:conclusion}.
 
-
-%%RC : Related works good for a phd thesis but too long for a paper. Ali you  need to learn to .... summarize :-)
-\section{Related works} % Trop proche de l'etat de l'art de l'article de Zorbas ?
+\section{Related works} 
 \label{rw}
 
 \indent  This section is  dedicated to  the various  approaches proposed  in the
 \label{rw}
 
 \indent  This section is  dedicated to  the various  approaches proposed  in the
@@ -196,7 +173,6 @@ algorithms in WSNs according to several design choices:
 
 The choice of non-disjoint or disjoint cover sets (sensors participate or not in
 many cover sets) can be added to the above list.
 
 The choice of non-disjoint or disjoint cover sets (sensors participate or not in
 many cover sets) can be added to the above list.
-% The independency in the cover set (i.e. whether the cover sets are disjoint or non-disjoint) \cite{zorbas2010solving} is another design choice that can be added to the above list.
 
 \subsection{Centralized approaches}
 
 
 \subsection{Centralized approaches}
 
@@ -208,14 +184,11 @@ network. Note that  centralized algorithms have the advantage  of requiring very
 low  processing  power  from  the  sensor  nodes,  which  usually  have  limited
 processing  capabilities. The  main drawback  of this  kind of  approach is  its
 higher cost in communications, since the  node that will make the decision needs
 low  processing  power  from  the  sensor  nodes,  which  usually  have  limited
 processing  capabilities. The  main drawback  of this  kind of  approach is  its
 higher cost in communications, since the  node that will make the decision needs
-information from  all the sensor  nodes.  \textcolor{blue} {Exact  or heuristic
-  approaches are designed to provide cover sets.
-%(Moreover, centralized approaches usually
-%suffer from the scalability problem, making them less competitive as the network
-%size increases.) 
-Contrary to exact methods, heuristic ones  can handle very large and centralized
-problems.  They are  proposed to  reduce computational  overhead such  as energy
-consumption, delay, and generally allow to increase the network lifetime.}
+information  from all  the  sensor nodes.   \textcolor{blue}{Exact or  heuristic
+  approaches  are designed  to provide  cover sets.  Contrary to  exact methods,
+  heuristic  ones can  handle very  large  and centralized  problems.  They  are
+  proposed to reduce  computational overhead such as  energy consumption, delay,
+  and generally allow to increase the network lifetime.}
 
 The first algorithms proposed in the literature consider that the cover sets are
 disjoint:  a  sensor  node  appears  in  exactly  one  of  the  generated  cover
 
 The first algorithms proposed in the literature consider that the cover sets are
 disjoint:  a  sensor  node  appears  in  exactly  one  of  the  generated  cover
@@ -227,7 +200,6 @@ designing  algorithms for  non-disjoint cover  sets generally  induces a  higher
 order  of complexity.   Moreover, in  case of  a sensor's  failure, non-disjoint
 scheduling policies  are less  resilient and  reliable because  a sensor  may be
 involved in more than one cover sets.
 order  of complexity.   Moreover, in  case of  a sensor's  failure, non-disjoint
 scheduling policies  are less  resilient and  reliable because  a sensor  may be
 involved in more than one cover sets.
-%For instance, the proposed work in ~\cite{cardei2005energy, berman04}    
 
 In~\cite{yang2014maximum},  the authors  have  considered  a linear  programming
 approach  to select  the minimum  number of  working sensor  nodes, in  order to
 
 In~\cite{yang2014maximum},  the authors  have  considered  a linear  programming
 approach  to select  the minimum  number of  working sensor  nodes, in  order to
@@ -246,7 +218,7 @@ proposed~\cite{gentili2013,castano2013column,rossi2012exact,deschinkel2012column
   lifetime can be hugely improved by decreasing the coverage ratio.}
 
 \subsection{Distributed approaches}
   lifetime can be hugely improved by decreasing the coverage ratio.}
 
 \subsection{Distributed approaches}
-%{\bf Distributed approaches}
+
 In distributed  and localized coverage  algorithms, the required  computation to
 schedule the  activity of  sensor nodes  will be done  by the  cooperation among
 neighboring nodes. These  algorithms may require more computation  power for the
 In distributed  and localized coverage  algorithms, the required  computation to
 schedule the  activity of  sensor nodes  will be done  by the  cooperation among
 neighboring nodes. These  algorithms may require more computation  power for the
@@ -277,10 +249,6 @@ maintained.   This heuristic  works in  rounds, requires  only  one-hop neighbor
 information, and each  sensor decides its status (active or  sleep) based on the
 perimeter coverage model from~\cite{Huang:2003:CPW:941350.941367}.
 
 information, and each  sensor decides its status (active or  sleep) based on the
 perimeter coverage model from~\cite{Huang:2003:CPW:941350.941367}.
 
-%Our Work, which is presented in~\cite{idrees2014coverage} proposed a coverage optimization protocol to improve the lifetime in
-%heterogeneous energy wireless sensor networks. 
-%In this work, the coverage protocol distributed in each sensor node in the subregion but the optimization take place over the the whole subregion. We consider only distributing the coverage protocol over two subregions. 
-
 The  works presented  in  \cite{Bang, Zhixin,  Zhang}  focus on  coverage-aware,
 distributed energy-efficient,  and distributed clustering  methods respectively,
 which  aim at extending  the network  lifetime, while  the coverage  is ensured.
 The  works presented  in  \cite{Bang, Zhixin,  Zhang}  focus on  coverage-aware,
 distributed energy-efficient,  and distributed clustering  methods respectively,
 which  aim at extending  the network  lifetime, while  the coverage  is ensured.
@@ -314,216 +282,10 @@ a single round  optimization in our previous work.  \textcolor{blue}{The idea is
   optimization problem becomes  more complex, its resolution is  stopped after a
   given time threshold}.
 
   optimization problem becomes  more complex, its resolution is  stopped after a
   given time threshold}.
 
-\iffalse
-   
-\subsection{Centralized Approaches}
-%{\bf Centralized approaches}
-The major approach  is to divide/organize the sensors into  a suitable number of
-set covers where  each set completely covers an interest  region and to activate
-these set covers successively.  The centralized algorithms always provide nearly
-or close  to optimal solution since the  algorithm has global view  of the whole
-network. Note that  centralized algorithms have the advantage  of requiring very
-low  processing  power  from  the  sensor  nodes,  which  usually  have  limited
-processing  capabilities. The  main drawback  of this  kind of  approach  is its
-higher cost in communications, since the  node that will take the decision needs
-information from all the  sensor nodes. Moreover, centralized approaches usually
-suffer from the scalability problem, making them less competitive as the network
-size increases.
-
-The first algorithms proposed in the literature consider that the cover sets are
-disjoint: a sensor node appears in exactly one of the generated cover sets.  For
-instance,  Slijepcevic  and  Potkonjak  \cite{Slijepcevic01powerefficient}  have
-proposed an algorithm, which allocates sensor nodes in mutually independent sets
-to monitor an area divided into  several fields.  Their algorithm builds a cover
-set by including in priority the  sensor nodes which cover critical fields, that
-is to say fields  that are covered by the smallest number  of sensors.  The time
-complexity of  their heuristic is $O(n^2)$  where $n$ is the  number of sensors.
-Abrams et al.~\cite{abrams2004set}  have designed three approximation algorithms
-for a variation of the set  k-cover problem, where the objective is to partition
-the sensors  into covers such  that the number  of covers that include  an area,
-summed  over all  areas, is  maximized.  Their  work builds  upon  previous work
-in~\cite{Slijepcevic01powerefficient}  and  the  generated  cover  sets  do  not
-provide complete coverage of the monitoring zone.
-
-In \cite{cardei2005improving}, the authors have proposed a method to efficiently
-compute the maximum number of disjoint set covers such that each set can monitor
-all targets. They first transform the problem into a maximum flow problem, which
-is formulated  as a mixed integer  programming (MIP). Then  their heuristic uses
-the output  of the MIP to compute  disjoint set covers.  Results  show that this
-heuristic  provides  a  number  of   set  covers  slightly  larger  compared  to
-\cite{Slijepcevic01powerefficient}, but with a  larger execution time due to the
-complexity of the mixed integer programming resolution.
-
-Zorbas et al.  \cite{zorbas2010solving} presented a centralized greedy algorithm
-for the efficient production of  both node disjoint and non-disjoint cover sets.
-Compared    to    algorithm's    results    of   Slijepcevic    and    Potkonjak
-\cite{Slijepcevic01powerefficient}, their heuristic produces more disjoint cover
-sets with a  slight growth rate in execution  time.  When producing non-disjoint
-cover sets,  both Static-CCF  and Dynamic-CCF algorithms,  where CCF  means that
-they  use a cost  function called  Critical Control  Factor, provide  cover sets
-offering longer network lifetime than those produced by \cite{cardei2005energy}.
-Also, they require  a smaller number of participating nodes  in order to achieve
-these results.
-
-In  the  case  of  non-disjoint algorithms  \cite{pujari2011high},  sensors  may
-participate in  more than one  cover set.  In  some cases, this may  prolong the
-lifetime of the network in comparison  to the disjoint cover set algorithms, but
-designing  algorithms for  non-disjoint cover  sets generally  induces  a higher
-order  of complexity.   Moreover, in  case of  a sensor's  failure, non-disjoint
-scheduling policies are less resilient and less reliable because a sensor may be
-involved   in   more  than   one   cover   sets.    For  instance,   Cardei   et
-al.~\cite{cardei2005energy}  present a  linear programming  (LP) solution  and a
-greedy approach to extend the  sensor network lifetime by organizing the sensors
-into a maximal number of  non-disjoint cover sets.  Simulation results show that
-by  allowing sensors  to  participate  in multiple  sets,  the network  lifetime
-increases     compared     with     related     work~\cite{cardei2005improving}.
-In~\cite{berman04},  the  authors  have  formulated  the  lifetime  problem  and
-suggested another (LP) technique to  solve this problem.  A centralized solution
-based  on  the  Garg-K\"{o}nemann  algorithm~\cite{garg98},  provably  near  the
-optimal solution, is also proposed.
-
-In~\cite{yang2014maximum},  the  authors  have  proposed  a  linear  programming
-approach for selecting  the minimum number of working sensor  nodes, in order to
-as to preserve  a maximum coverage and extend lifetime of  the network. Cheng et
-al.~\cite{cheng2014energy} have defined a  heuristic algorithm called Cover Sets
-Balance (CSB), which choose a set of active nodes using the tuple (data coverage
-range, residual energy).   Then, they have introduced a  new Correlated Node Set
-Computing (CNSC)  algorithm to find  the correlated node  set for a  given node.
-After that,  they proposed  a High Residual  Energy First (HREF)  node selection
-algorithm to  minimize the number of active  nodes so as to  prolong the network
-lifetime. Various centralized methods based on column generation approaches have
-also been proposed~\cite{castano2013column,rossi2012exact,deschinkel2012column}.
-
-\subsection{Distributed approaches}
-%{\bf Distributed approaches}
-In distributed  and localized coverage  algorithms, the required  computation to
-schedule the  activity of  sensor nodes  will be done  by the  cooperation among
-neighboring nodes. These  algorithms may require more computation  power for the
-processing by the cooperating sensor nodes, but they are more scalable for large
-WSNs.  Localized and distributed algorithms generally result in non-disjoint set
-covers.
-
-Many distributed algorithms have been  developed to perform the scheduling so as
-to          preserve         coverage,          see          for         example
-\cite{Gallais06,Tian02,Ye03,Zhang05,HeinzelmanCB02,yardibi2010distributed}.
-Distributed  algorithms   typically  operate  in  rounds   for  a  predetermined
-duration. At  the beginning of each  round, a sensor  exchanges information with
-its neighbors and makes a decision to  either remain turned on or to go to sleep
-for the  round. This decision is  basically made on simple  greedy criteria like
-the largest  uncovered area \cite{Berman05efficientenergy}  or maximum uncovered
-targets  \cite{lu2003coverage}.   In  \cite{Tian02},  the scheduling  scheme  is
-divided into rounds, where each round  has a self-scheduling phase followed by a
-sensing phase.  Each sensor broadcasts  a message containing the node~ID and the
-node  location to  its  neighbors at  the  beginning of  each  round.  A  sensor
-determines its status by a rule named off-duty eligible rule, which tells him to
-turn off if its  sensing area is covered by its neighbors.  A back-off scheme is
-introduced to let each sensor delay the decision process with a random period of
-time, in  order to  avoid simultaneous conflicting  decisions between  nodes and
-lack  of coverage  on any  area.   In \cite{prasad2007distributed}  a model  for
-capturing  the dependencies  between  different  cover sets  is  defined and  it
-proposes localized heuristic based on this dependency. The algorithm consists of
-two  phases,  an initial  setup  phase during  which  each  sensor computes  and
-prioritizes  the covers  and  a sensing  phase  during which  each sensor  first
-decides  its on/off  status, and  then remains  on or  off for  the rest  of the
-duration. 
-
-The  authors  in  \cite{yardibi2010distributed}  have  developed  a  Distributed
-Adaptive  Sleep Scheduling  Algorithm (DASSA)  for WSNs  with  partial coverage.
-DASSA  does  not  require  location  information of  sensors  while  maintaining
-connectivity and satisfying a user defined coverage target.  In DASSA, nodes use
-the  residual  energy levels  and  feedback from  the  sink  for scheduling  the
-activity of their neighbors.  This  feedback mechanism reduces the randomness in
-scheduling  that  would   otherwise  occur  due  to  the   absence  of  location
-information.  In  \cite{ChinhVu}, the author  have proposed a  novel distributed
-heuristic, called Distributed Energy-efficient Scheduling for k-coverage (DESK),
-which ensures that the energy consumption  among the sensors is balanced and the
-lifetime maximized while the coverage requirement is maintained.  This heuristic
-works in  rounds, requires  only one-hop neighbor  information, and  each sensor
-decides  its status  (active or  sleep) based  on the  perimeter  coverage model
-proposed in \cite{Huang:2003:CPW:941350.941367}.
-
-%Our Work, which is presented in~\cite{idrees2014coverage} proposed a coverage optimization protocol to improve the lifetime in
-%heterogeneous energy wireless sensor networks. 
-%In this work, the coverage protocol distributed in each sensor node in the subregion but the optimization take place over the the whole subregion. We consider only distributing the coverage protocol over two subregions. 
-
-The  works presented in  \cite{Bang, Zhixin,  Zhang} focus  on coverage-aware,
-distributed energy-efficient,  and distributed clustering  methods respectively,
-which aim  to extend the network  lifetime, while the coverage  is ensured.  S.
-Misra et al.   \cite{Misra} have proposed a localized  algorithm for coverage in
-sensor networks.  The  algorithm conserve the energy while  ensuring the network
-coverage by activating the subset of  sensors with the minimum overlap area. The
-proposed method preserves  the network connectivity by formation  of the network
-backbone.  More recently, Shibo et  al. \cite{Shibo} have expressed the coverage
-problem  as  a  minimum weight  submodular  set  cover  problem and  proposed  a
-Distributed Truncated Greedy Algorithm (DTGA)  to solve it.  They take advantage
-from both  temporal and  spatial correlations between  data sensed  by different
-sensors,   and    leverage   prediction,   to   improve    the   lifetime.    In
-\cite{xu2001geography},   Xu  et   al.  have   proposed  an   algorithm,  called
-Geographical Adaptive Fidelity (GAF), which uses geographic location information
-to divide  the area of  interest into fixed  square grids. Within each  grid, it
-keeps only  one node  staying awake  to take the  responsibility of  sensing and
-communication.
-
-Some  other  approaches (outside  the  scope  of our  work)  do  not consider  a
-synchronized and  predetermined period of time  where the sensors  are active or
-not.   Indeed, each  sensor maintains  its  own timer  and its  wake-up time  is
-randomized \cite{Ye03} or regulated \cite{cardei2005maximum} over time.
-
-The MuDiLCO protocol (for Multiround Distributed Lifetime Coverage Optimization
-protocol) presented  in this  paper is an  extension of the  approach introduced
-in~\cite{idrees2014coverage}.   In~\cite{idrees2014coverage},  the  protocol  is
-deployed over  only two  subregions. Simulation results  have shown that  it was
-more  interesting  to  divide  the  area  into  several  subregions,  given  the
-computation complexity. Compared to our previous paper, in this one we study the
-possibility of dividing  the sensing phase into multiple rounds  and we also add
-an  improved  model  of energy  consumption  to  assess  the efficiency  of  our
-approach.
-
-
-
-
-\fi
-%The main contributions of our MuDiLCO Protocol can be summarized as follows:
-%(1) The high coverage ratio, (2) The reduced number of active nodes, (3) The distributed optimization over the subregions in the area of interest, (4) The distributed dynamic leader election at each round based on some priority factors that led to energy consumption balancing among the nodes in the same subregion, (5) The primary point coverage model to represent each sensor node in the network, (6) The activity scheduling based optimization on the subregion, which are based on the primary point coverage model to activate as less number as possible of sensor nodes for a multirounds to take the mission of the coverage in each subregion, (7) The very low energy consumption, (8) The higher network lifetime.
-%\section{Preliminaries}
-%\label{Pr}
-
-%Network Lifetime
-
-%\subsection{Network Lifetime}
-%Various   definitions   exist   for   the   lifetime   of   a   sensor
-%network~\cite{die09}.  The main definitions proposed in the literature are
-%related to the  remaining energy of the nodes or  to the coverage percentage. 
-%The lifetime of the  network is mainly defined as the amount
-%of  time during which  the network  can  satisfy its  coverage objective  (the
-%amount of  time that the network  can cover a given  percentage of its
-%area or targets of interest). In this work, we assume that the network
-%is alive  until all  nodes have  been drained of  their energy  or the
-%sensor network becomes disconnected, and we measure the coverage ratio
-%during the WSN lifetime.  Network connectivity is important because an
-%active sensor node without  connectivity towards a base station cannot
-%transmit information on an event in the area that it monitors.
 
 \section{MuDiLCO protocol description}
 \label{pd}
 
 
 \section{MuDiLCO protocol description}
 \label{pd}
 
-%Our work will concentrate on the area coverage by design
-%and implementation of a  strategy, which efficiently selects the active
-%nodes   that  must   maintain  both   sensing  coverage   and  network
-%connectivity and at the same time improve the lifetime of the wireless
-%sensor  network. But,  requiring  that  all physical  points  of  the
-%considered region are covered may  be too strict, especially where the
-%sensor network is not dense.   Our approach represents an area covered
-%by a sensor as a set of primary points and tries to maximize the total
-%number  of  primary points  that  are  covered  in each  round,  while
-%minimizing  overcoverage (points  covered by  multiple  active sensors
-%simultaneously).
-
-%In this section, we introduce a Multiround Distributed Lifetime Coverage Optimization protocol, which is called MuDiLCO. It is  distributed on each subregion in the area of interest. It is based on two efficient techniques: network
-%leader election and sensor activity scheduling for coverage preservation and energy conservation continuously and efficiently to maximize the lifetime in the network.  
-%The main features of our MuDiLCO protocol:
-%i)It divides the area of interest into subregions by using divide-and-conquer concept, ii)It requires only the information of the nodes within the subregion, iii) it divides the network lifetime into periods, which consists in round(s), iv)It based on the autonomous distributed decision by the nodes in the subregion to elect the Leader, v)It apply the activity scheduling based optimization on the subregion, vi)  it achieves an energy consumption balancing among the nodes in the subregion by selecting different nodes as a leader during the network lifetime, vii) It uses the optimization to select the best representative non-disjoint sets of sensors in the subregion by optimize the coverage and the lifetime over the area of interest, viii)It uses our proposed primary point coverage model, which represent the sensing range of the sensor as a set of points, which are used by the our optimization algorithm, ix) It uses a simple energy model that takes communication, sensing and computation energy consumptions into account to evaluate the performance of our Protocol.
-
 \subsection{Assumptions}
 
 We  consider a  randomly and  uniformly  deployed network  consisting of  static
 \subsection{Assumptions}
 
 We  consider a  randomly and  uniformly  deployed network  consisting of  static
@@ -544,8 +306,6 @@ Zhou~\cite{Zhang05} proved that if  the transmission range fulfills the previous
 hypothesis, a complete coverage of  a convex area implies connectivity among the
 active nodes.
 
 hypothesis, a complete coverage of  a convex area implies connectivity among the
 active nodes.
 
-%Instead  of working  with a  continuous coverage  area, we  make it  discrete by considering for each sensor a set of points called primary points. Consequently, we assume  that the sensing disk  defined by a sensor  is covered if  all of its primary points are covered. The choice of number and locations of primary points is the subject of another study not presented here.
-
 \indent Instead of working with the coverage area, we consider for each sensor a
 set of  points called  primary points~\cite{idrees2014coverage}. We  assume that
 the sensing  disk defined by a  sensor is covered  if all the primary  points of
 \indent Instead of working with the coverage area, we consider for each sensor a
 set of  points called  primary points~\cite{idrees2014coverage}. We  assume that
 the sensing  disk defined by a  sensor is covered  if all the primary  points of
@@ -583,24 +343,6 @@ $X_{23}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{\sqrt{3}}{2})) $\\
 $X_{24}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $\\
 $X_{25}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $.
 
 $X_{24}=( p_x + R_s * (\frac{- 1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $\\
 $X_{25}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $.
 
-
-%\begin{figure} %[h!]
-%\centering
-% \begin{multicols}{2}
-%\centering
-%\includegraphics[scale=0.28]{fig21.pdf}\\~ (a)
-%\includegraphics[scale=0.28]{principles13.pdf}\\~(c) 
-%\hfill \hfill
-%\includegraphics[scale=0.28]{fig25.pdf}\\~(e)
-%\includegraphics[scale=0.28]{fig22.pdf}\\~(b)
-%\hfill \hfill
-%\includegraphics[scale=0.28]{fig24.pdf}\\~(d)
-%\includegraphics[scale=0.28]{fig26.pdf}\\~(f)
-%\end{multicols} 
-%\caption{Wireless Sensor Node represented by (a) 5, (b) 9, (c) 13, (d) 17, (e) 21 and (f) 25 primary points respectively}
-%\label{fig1}
-%\end{figure}
-    
 \begin{figure}[h]
   \centering
   \includegraphics[scale=0.375]{fig26.pdf}
 \begin{figure}[h]
   \centering
   \includegraphics[scale=0.375]{fig26.pdf}
@@ -608,24 +350,7 @@ $X_{25}=( p_x + R_s * (\frac{1}{2}), p_y + R_s * (\frac{-\sqrt{3}}{2})) $.
   \caption{Wireless sensor node represented by up to 25~primary points}
 \end{figure}
 
   \caption{Wireless sensor node represented by up to 25~primary points}
 \end{figure}
 
-%By  knowing the  position (point  center: ($p_x,p_y$))  of  a wireless
-%sensor node  and its $R_s$,  we calculate the primary  points directly
-%based on the proposed model. We  use these primary points (that can be
-%increased or decreased if necessary)  as references to ensure that the
-%monitored  region  of interest  is  covered  by  the selected  set  of
-%sensors, instead of using all the points in the area.
-
-%The MuDiLCO protocol works in periods and executed at each sensor node in the network, each sensor node can still sense data while being in
-%LISTENING mode. Thus, by entering the LISTENING mode at the beginning of each round,
-%sensor nodes still executing sensing task while participating in the leader election and decision phases. More specifically, The MuDiLCO protocol algorithm works as follow: 
-%Initially, the sensor node check it's remaining energy in order to participate in the current round. Each sensor node determines it's position and it's subregion based Embedded GPS  or Location Discovery Algorithm. After that, All the sensors collect position coordinates, current remaining energy, sensor node id, and the number of its one-hop live neighbors during the information exchange. It stores this information into a list $L$.
-%The sensor node enter in listening mode waiting to receive ActiveSleep packet from the leader after the decision to apply multi-round activity scheduling during the sensing phase. Each sensor node will execute the Algorithm~1 to know who is the leader. After that, if the sensor node is leader, It will execute the integer program algorithm ( see section~\ref{cp}) to optimize the coverage and the lifetime in it's subregion. After the decision, the optimization approach will produce the cover sets of sensor nodes to take the mission of coverage during the sensing phase for $T$ rounds. The leader will send ActiveSleep packet to each sensor node in the subregion to inform him to it's schedule for $T$ rounds during the period of sensing, either Active or sleep until the starting of next period. Based on the decision, the leader as other nodes in subregion, either go to be active or go to be sleep based on it's schedule for $T$ rounds during current sensing phase. the other nodes in the same subregion will stay in listening mode waiting the ActiveSleep packet from the leader. After finishing the time period for sensing, which are includes $T$ rounds, all the sensor nodes in the same subregion will start new period by executing the MuDiLCO protocol and the lifetime in the subregion will continue until all the sensor nodes are died or the network becomes disconnected in the subregion.
-
 \subsection{Background idea}
 \subsection{Background idea}
-%%RC : we need to clarify the difference between round and period. Currently it seems to be the same (for me at least).
-%The area of  interest can be divided using  the divide-and-conquer strategy into
-%smaller  areas,  called  subregions,  and  then our MuDiLCO  protocol will be
-%implemented in each subregion in a distributed way.
 
 \textcolor{blue}{The WSN  area of  interest is,  at  first,  divided into
   regular  homogeneous subregions  using  a divide-and-conquer  algorithm. Then, our  protocol  will be  executed  in a  distributed  way in  each
 
 \textcolor{blue}{The WSN  area of  interest is,  at  first,  divided into
   regular  homogeneous subregions  using  a divide-and-conquer  algorithm. Then, our  protocol  will be  executed  in a  distributed  way in  each
@@ -649,15 +374,8 @@ sets that will take the mission of sensing for $T$ rounds.
 \label{fig2}
 \end{figure} 
 
 \label{fig2}
 \end{figure} 
 
-%Each period is divided into 4 phases: Information  Exchange,
-%Leader  Election, Decision,  and  Sensing.  Each sensing phase may be itself divided into $T$ rounds.
-% set cover responsible for the sensing task.  
-%For each round a set of sensors (said a cover set) is responsible for the sensing task.
-
 This  protocol minimizes  the  impact of  unexpected node  failure  (not due  to
 batteries running out of energy), because it works in periods.
 This  protocol minimizes  the  impact of  unexpected node  failure  (not due  to
 batteries running out of energy), because it works in periods.
-%This protocol is reliable against an unexpected node failure, because it works in periods. 
-%%RC : why? I am not convinced
  On the one hand, if a node  failure is detected before making the decision, the
  node will not  participate to this phase,  and, on the other hand,  if the node
  failure occurs  after the  decision, the  sensing task of  the network  will be
  On the one hand, if a node  failure is detected before making the decision, the
  node will not  participate to this phase,  and, on the other hand,  if the node
  failure occurs  after the  decision, the  sensing task of  the network  will be
@@ -665,11 +383,7 @@ batteries running out of energy), because it works in periods.
  starts.   \textcolor{blue}{The   duration   of  the   rounds  is  a   predefined
    parameter. Round duration  should be long enough to hide  the system control
    overhead and  short enough to minimize  the negative effects in  case of node
  starts.   \textcolor{blue}{The   duration   of  the   rounds  is  a   predefined
    parameter. Round duration  should be long enough to hide  the system control
    overhead and  short enough to minimize  the negative effects in  case of node
-   failures.}
-
-%%RC so if there are at least one failure per period, the coverage is bad...
-%%MS if we want to be reliable against many node failures we need to have an
-%% overcoverage...  
+   failures.}  
 
 The  energy consumption  and some  other constraints  can easily  be  taken into
 account,  since the  sensors  can  update and  then  exchange their  information
 
 The  energy consumption  and some  other constraints  can easily  be  taken into
 account,  since the  sensors  can  update and  then  exchange their  information
@@ -678,8 +392,6 @@ pre-sensing  phases (Information  Exchange, Leader  Election, and  Decision) are
 energy  consuming for some  nodes, even  when they  do not  join the  network to
 monitor the area.
 
 energy  consuming for some  nodes, even  when they  do not  join the  network to
 monitor the area.
 
-%%%%%%%%%%%%%%%%%parler optimisation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
 We define two types of packets that will be used by the proposed protocol:
 \begin{enumerate}[(a)] 
 \item INFO  packet: such a  packet  will be sent by  each sensor node  to all the
 We define two types of packets that will be used by the proposed protocol:
 \begin{enumerate}[(a)] 
 \item INFO  packet: such a  packet  will be sent by  each sensor node  to all the
@@ -711,10 +423,6 @@ packets sent by other nodes.  After  that, each node will have information about
 all  the sensor  nodes in  the subregion.   In our  model, the  remaining energy
 corresponds to the time that a sensor can live in the active mode.
 
 all  the sensor  nodes in  the subregion.   In our  model, the  remaining energy
 corresponds to the time that a sensor can live in the active mode.
 
-%\subsection{\textbf Working Phase:}
-
-%The working phase works in rounding fashion. Each round include 3 steps described as follow :
-
 \subsection{Leader Election phase}
 
 This step  consists in choosing  the Wireless  Sensor Node Leader  (WSNL), which
 \subsection{Leader Election phase}
 
 This step  consists in choosing  the Wireless  Sensor Node Leader  (WSNL), which
@@ -728,11 +436,6 @@ larger index. Observations on previous simulations  suggest to use the number of
 one-hop neighbors as  the primary criterion to reduce energy  consumption due to
 the communications.
 
 one-hop neighbors as  the primary criterion to reduce energy  consumption due to
 the communications.
 
-%the more priority selection factor is the number of $1-hop$ neighbors, $NBR j$, which can  minimize the energy consumption during the communication Significantly.  
-%The pseudo-code for leader election phase is provided in Algorithm~1.
-
-%Where $E_{th}$ is the minimum energy needed to stay active during the sensing phase. As shown in Algorithm~1, the more priority selection factor is the number of $1-hop$ neighbours, $NBR j$, which can  minimize the energy consumption during the communication Significantly.  
-
 \subsection{Decision phase}
 
 Each WSNL will  \textcolor{blue}{solve an integer program to  select which cover
 \subsection{Decision phase}
 
 Each WSNL will  \textcolor{blue}{solve an integer program to  select which cover
@@ -741,22 +444,7 @@ Each WSNL will  \textcolor{blue}{solve an integer program to  select which cover
   WSNL will send an Active-Sleep packet to each sensor in the subregion based on
   the algorithm's results,  indicating if the sensor should be  active or not in
   each round of the sensing phase.}
   WSNL will send an Active-Sleep packet to each sensor in the subregion based on
   the algorithm's results,  indicating if the sensor should be  active or not in
   each round of the sensing phase.}
-%Each  WSNL will \textcolor{red}{ execute an optimization algorithm (see section \ref{oa})} to  select which  cover sets  will be
-%activated in  the following  sensing phase  to cover the  subregion to  which it
-%belongs.  The \textcolor{red}{optimization algorithm} will produce $T$ cover sets,  one for each round. The WSNL will send an Active-Sleep  packet to each sensor in the subregion based on the algorithm's results, indicating if  the sensor should be active or not in
-%each round  of the  sensing phase.  
-
-
-%solve  an integer  program
-
-
 
 
-
-
-
-
-%\section{\textcolor{red}{ Optimization Algorithm for Multiround Lifetime Coverage Optimization}}
-%\label{oa}
 As shown in Algorithm~\ref{alg:MuDiLCO}, the leader will execute an optimization
 algorithm based on an integer program. The integer program is based on the model
 proposed by \cite{pedraza2006}  with some modifications, where  the objective is
 As shown in Algorithm~\ref{alg:MuDiLCO}, the leader will execute an optimization
 algorithm based on an integer program. The integer program is based on the model
 proposed by \cite{pedraza2006}  with some modifications, where  the objective is
@@ -770,8 +458,6 @@ points as targets.  The  set of primary points is denoted by $P$  and the set of
 sensors by  $J$. Only sensors  able to  be alive during  at least one  round are
 involved in the integer program.
 
 sensors by  $J$. Only sensors  able to  be alive during  at least one  round are
 involved in the integer program.
 
-%parler de la limite en energie Et pour un round
-
 For a  primary point  $p$, let $\alpha_{j,p}$  denote the indicator  function of
 whether the point $p$ is covered, that is:
 \begin{equation}
 For a  primary point  $p$, let $\alpha_{j,p}$  denote the indicator  function of
 whether the point $p$ is covered, that is:
 \begin{equation}
@@ -843,12 +529,6 @@ U_{t,p} \in \lbrace0,1\rbrace, \hspace{10 mm}\forall p \in P, t = 1,\dots,T  \la
  \Theta_{t,p} \geq 0 \hspace{10 mm}\forall p \in P, t = 1,\dots,T \label{eq178}
 \end{equation}
 
  \Theta_{t,p} \geq 0 \hspace{10 mm}\forall p \in P, t = 1,\dots,T \label{eq178}
 \end{equation}
 
-%\begin{equation}
-%(W_{\theta}+W_{\psi} = P)    \label{eq19} 
-%\end{equation}
-
-%%RC why W_{\theta} is not defined (only one sentence)? How to define in practice Wtheta and Wu?
-
 \begin{itemize}
 \item $X_{t,j}$:  indicates whether  or not the  sensor $j$ is  actively sensing
   during round $t$ (1 if yes and 0 if not);
 \begin{itemize}
 \item $X_{t,j}$:  indicates whether  or not the  sensor $j$ is  actively sensing
   during round $t$ (1 if yes and 0 if not);
@@ -872,7 +552,6 @@ points in order to activate a minimum  number of sensors.  Second we prevent the
 absence  of  monitoring  on  some  parts of  the  subregion  by  minimizing  the
 undercoverage.  The weights  $W_\theta$ and $W_U$ must be properly  chosen so as
 to guarantee that the maximum number of points are covered during each round.
 absence  of  monitoring  on  some  parts of  the  subregion  by  minimizing  the
 undercoverage.  The weights  $W_\theta$ and $W_U$ must be properly  chosen so as
 to guarantee that the maximum number of points are covered during each round.
-%% MS W_theta is smaller than W_u => problem with the following sentence
 In our simulations,  priority is given to the coverage  by choosing $W_{U}$ very
 large compared to $W_{\theta}$.
 
 In our simulations,  priority is given to the coverage  by choosing $W_{U}$ very
 large compared to $W_{\theta}$.
 
@@ -883,7 +562,6 @@ large compared to $W_{\theta}$.
   $P*T$ overcoverage variables and $P*T$  undercoverage variables. The number of
   constraints  is equal  to $P*T$  (for constraints  (\ref{eq16})) $+$  $A$ (for
   constraints (\ref{eq144})).}
   $P*T$ overcoverage variables and $P*T$  undercoverage variables. The number of
   constraints  is equal  to $P*T$  (for constraints  (\ref{eq16})) $+$  $A$ (for
   constraints (\ref{eq144})).}
-%The Active-Sleep packet includes the schedule vector with the number of rounds that should be applied by the receiving sensor node during the sensing phase
 
 \subsection{Sensing phase}
 
 
 \subsection{Sensing phase}
 
@@ -893,22 +571,13 @@ sleep for each  round of the sensing  phase.  Algorithm~\ref{alg:MuDiLCO}, which
 will  be executed  by  each sensor  node~$s_j$  at the  beginning  of a  period,
 explains how the Active-Sleep packet is obtained.
 
 will  be executed  by  each sensor  node~$s_j$  at the  beginning  of a  period,
 explains how the Active-Sleep packet is obtained.
 
-% In each round during the sensing phase, there is a cover set of sensor nodes,  in which  the active  sensors will  execute  their sensing  task  to preserve maximal  coverage and lifetime in the subregion and this will continue until finishing the round $T$ and starting new period. 
-
 \begin{algorithm}[h!]                
 \begin{algorithm}[h!]                
- % \KwIn{all the parameters related to information exchange}
-%  \KwOut{$winer-node$ (: the id of the winner sensor node, which is the leader of current round)}
-  \BlankLine
-  %\emph{Initialize the sensor node and determine it's position and subregion} \; 
-  
+  \BlankLine  
   \If{ $RE_j \geq E_{R}$ }{
       \emph{$s_j.status$ = COMMUNICATION}\;
       \emph{Send $INFO()$ packet to other nodes in the subregion}\;
       \emph{Wait $INFO()$ packet from other nodes in the subregion}\; 
   \If{ $RE_j \geq E_{R}$ }{
       \emph{$s_j.status$ = COMMUNICATION}\;
       \emph{Send $INFO()$ packet to other nodes in the subregion}\;
       \emph{Wait $INFO()$ packet from other nodes in the subregion}\; 
-      %\emph{UPDATE $RE_j$ for every sent or received INFO Packet}\;
-      %\emph{ Collect information and construct the list L for all nodes in the subregion}\;
       
       
-      %\If{ the received INFO Packet = No. of nodes in it's subregion -1  }{
       \emph{LeaderID = Leader election}\;
       \If{$ s_j.ID = LeaderID $}{
         \emph{$s_j.status$ = COMPUTATION}\;
       \emph{LeaderID = Leader election}\;
       \If{$ s_j.ID = LeaderID $}{
         \emph{$s_j.status$ = COMPUTATION}\;
@@ -922,191 +591,19 @@ explains how the Active-Sleep packet is obtained.
       \Else{
         \emph{$s_j.status$ = LISTENING}\;
         \emph{Wait $ActiveSleep()$ packet from the Leader}\;
       \Else{
         \emph{$s_j.status$ = LISTENING}\;
         \emph{Wait $ActiveSleep()$ packet from the Leader}\;
-        % \emph{After receiving Packet, Retrieve the schedule and the $T$ rounds}\;
         \emph{Update $RE_j $}\;
       }  
         \emph{Update $RE_j $}\;
       }  
-      %  }
   }
   \Else { Exclude $s_j$ from entering in the current sensing phase}
   
   }
   \Else { Exclude $s_j$ from entering in the current sensing phase}
   
- %   \emph{return X} \;
 \caption{MuDiLCO($s_j$)}
 \label{alg:MuDiLCO}
 
 \end{algorithm}
 
 \caption{MuDiLCO($s_j$)}
 \label{alg:MuDiLCO}
 
 \end{algorithm}
 
-\iffalse
-\textcolor{red}{This integer program can be solved using two approaches:}
-
-\subsection{\textcolor{red}{Optimization solver for Multiround Lifetime Coverage Optimization}}
-\label{glpk}
-\textcolor{red}{The modeling language for Mathematical Programming (AMPL)~\cite{AMPL} is  employed to generate the integer program instance  in a  standard format, which  is then read  and solved  by the optimization solver  GLPK (GNU  linear Programming Kit  available in  the public domain) \cite{glpk} through a Branch-and-Bound method. We named the protocol which is based on GLPK solver in the decision phase as MuDiLCO.}
-\fi
-
-\iffalse
-
-\subsection{\textcolor{red}{Genetic Algorithm for Multiround Lifetime Coverage Optimization}}
-\label{GA}
-\textcolor{red}{Metaheuristics  are a generic search strategies for exploring search spaces for solving the complex problems. These strategies have to dynamically balance between the exploitation of the accumulated search experience and the exploration of the search space. On one hand, this balance can find regions in the search space with high-quality solutions. On the other hand, it prevents waste too much time in regions of the search space which are either already explored or don’t provide high-quality solutions. Therefore,  metaheuristic provides an enough good solution to an optimization problem, especially with incomplete  information or limited computation capacity \cite{bianchi2009survey}. Genetic Algorithm (GA) is one of the population-based metaheuristic methods that simulates the process of natural selection \cite{hassanien2015applications}.  GA starts with a population of random candidate solutions (called individuals or phenotypes) . GA uses genetic operators inspired by natural evolution, such as selection, mutation, evaluation, crossover, and replacement so as to improve the initial population of candidate solutions. This process repeated until a stopping criterion is satisfied. In comparison with GLPK optimization solver, GA provides a near optimal solution with acceptable execution time, as well as it requires a less amount of memory especially for large size problems. GLPK provides optimal solution, but it requires higher execution time and amount of memory for large problem.}
-
-\textcolor{red}{In this section, we present a metaheuristic based GA to solve our multiround lifetime coverage optimization problem. The proposed GA provides a near optimal sechedule for multiround sensing per period. The proposed GA is based on the mathematical model which is presented in Section \ref{oa}. Algorithm \ref{alg:GA} shows the proposed GA to solve the coverage lifetime optimization problem. We named the new protocol which is based on GA in the decision phase as GA-MuDiLCO. The proposed GA can be explained in more details as follow:}
-
-\begin{algorithm}[h!]    
-       
- \small
- \SetKwInput{Input}{\textcolor{red}{Input}}
- \SetKwInput{Output}{\textcolor{red}{Output}}
- \Input{ \textcolor{red}{$ P, J, T, S_{pop}, \alpha_{j,p}^{ind}, X_{t,j}^{ind}, \Theta_{t,p}^{ind}, U_{t,p}^{ind}, Child_{t,j}^{ind}, Ch.\Theta_{t,p}^{ind}, Ch.U_{t,p}^{ind_1}$}}
- \Output{\textcolor{red}{$\left\{\left(X_{1,1},\dots, X_{t,j}, \dots, X_{T,J}\right)\right\}_{t \in T, j \in J}$}}
-
-  \BlankLine
-  %\emph{Initialize the sensor node and determine it's position and subregion} \; 
-  \ForEach {\textcolor{red}{Individual $ind$ $\in$ $S_{pop}$}} {
-     \emph{\textcolor{red}{Generate Randomly Chromosome $\left\{\left(X_{1,1},\dots, X_{t,j}, \dots, X_{T,J}\right)\right\}_{t \in T, j \in J}$}}\;
-     
-     \emph{\textcolor{red}{Update O-U-Coverage $\left\{(P, J, \alpha_{j,p}^{ind}, X_{t,j}^{ind}, \Theta_{t,p}^{ind}, U_{t,p}^{ind})\right\}_{p \in P}$}}\;
-     
-  
-     \emph{\textcolor{red}{Evaluate Individual $(P, J, X_{t,j}^{ind}, \Theta_{t,p}^{ind}, U_{t,p}^{ind})$}}\;  
-  }
-  
-  \While{\textcolor{red}{ Stopping criteria is not satisfied} }{
-  
-  \emph{\textcolor{red}{Selection $(ind_1, ind_2)$}}\;
-    \emph{\textcolor{red}{Crossover $(P_c, X_{t,j}^{ind_1}, X_{t,j}^{ind_2}, Child_{t,j}^{ind_1}, Child_{t,j}^{ind_2})$}}\;
-    \emph{\textcolor{red}{Mutation $(P_m, Child_{t,j}^{ind_1}, Child_{t,j}^{ind_2})$}}\;
-   
-   
-   \emph{\textcolor{red}{Update O-U-Coverage $(P, J, \alpha_{j,p}^{ind}, Child_{t,j}^{ind_1}, Ch.\Theta_{t,p}^{ind_1}, Ch.U_{t,p}^{ind_1})$}}\;
-  \emph{\textcolor{red}{Update O-U-Coverage $(P, J, \alpha_{j,p}^{ind}, Child_{t,j}^{ind_2}, Ch.\Theta_{t,p}^{ind_2}, Ch.U_{t,p}^{ind_2})$}}\;  
-\emph{\textcolor{red}{Evaluate New Individual$(P, J, Child_{t,j}^{ind_1}, Ch.\Theta_{t,p}^{ind_1}, Ch.U_{t,p}^{ind_1})$}}\;  
- \emph{\textcolor{red}{Replacement $(P, J, T, Child_{t,j}^{ind_1}, Ch.\Theta_{t,p}^{ind_1}, Ch.U_{t,p}^{ind_1}, X_{t,j}^{ind}, \Theta_{t,p}^{ind}, U_{t,p}^{ind}  )$ }}\;
- \emph{\textcolor{red}{Evaluate New Individual$(P, J, Child_{t,j}^{ind_2}, Ch.\Theta_{t,p}^{ind_2}, Ch.U_{t,p}^{ind_2})$}}\;  
-  
- \emph{\textcolor{red}{Replacement $(P, J, T, Child_{t,j}^{ind_2}, Ch.\Theta_{t,p}^{ind_2}, Ch.U_{t,p}^{ind_2}, X_{t,j}^{ind}, \Theta_{t,p}^{ind}, U_{t,p}^{ind}  )$ }}\;
-  
-      
-  }
-  \emph{\textcolor{red}{$\left\{\left(X_{1,1},\dots,X_{t,j},\dots,X_{T,J}\right)\right\}$ =
-            Select Best Solution ($S_{pop}$)}}\;
- \emph{\textcolor{red}{return X}} \;
-\caption{\textcolor{red}{GA($T, J$)}}
-\label{alg:GA}
-
-\end{algorithm}
-
-
-\begin{enumerate} [I)]
-
-\item \textcolor{red}{\textbf{Representation:} Since the proposed GA's goal is to find the optimal schedule of the sensor nodes which take the responsibility of monitoring the subregion for $T$ rounds in the sensing phase, the chromosome is defined as a schedule for alive  sensors and each chromosome contains $T$ rounds. The proposed GA uses binary representation, where each round in the schedule includes J genes, the total alive sensors in the subregion. Therefore, the gene of such a chromosome is a schedule of a sensor. In other words, The genes corresponding to active nodes have the value of one, the others are zero. Figure \ref{chromo} shows solution representation in the proposed GA.}
-%[scale=0.3]
-\begin{figure}[h!]
-\centering
- \includegraphics [scale=0.35] {rep.pdf} 
-\caption{Candidate Solution representation by the proposed GA. }
-\label{chromo}
-\end{figure} 
-
-
-
-\item \textcolor{red}{\textbf{Initialize Population:} The initial population is randomly generated and each chromosome  in the GA population represents a possible sensors schedule solution to cover the entire subregion for $T$ rounds during current period. Each sensor in the chromosome is given a random value (0 or  1) for all rounds. If the random value is 1, the remaining  energy of this sensor should be adequate to activate this sensor during the current round. Otherwise, the value is set to 0. The energy constraint is applied for each sensor during all rounds. }
-
-
-\item \textcolor{red}{\textbf{Update O-U-Coverage:} 
-After creating the initial population, The overcoverage $\Theta_{t,p}$ and undercoverage $U_{t,p}$ for each candidate solution are computed (see Algorithm \ref{OU}) so as to use them in the next step.}
-
-\begin{algorithm}[h!]                
-  
- \SetKwInput{Input}{\textcolor{red}{Input}}
- \SetKwInput{Output}{\textcolor{red}{Output}}
- \Input{ \textcolor{red}{parameters $P, J, ind, \alpha_{j,p}^{ind}, X_{t,j}^{ind}$}}
- \Output{\textcolor{red}{$U^{ind} = \left\lbrace U_{1,1}^{ind}, \dots, U_{t,p}^{ind}, \dots, U_{T,P}^{ind} \right\rbrace$ and $\Theta^{ind} = \left\lbrace \Theta_{1,1}^{ind}, \dots, \Theta_{t,p}^{ind}, \dots, \Theta_{T,P}^{ind} \right\rbrace$}}
-
-  \BlankLine
-
-  \For{\textcolor{red}{$t\leftarrow 1$ \KwTo $T$}}{
-  \For{\textcolor{red}{$p\leftarrow 1$ \KwTo $P$}}{
-     
- %    \For{$i\leftarrow 0$ \KwTo $I_j$}{
-       \emph{\textcolor{red}{$SUM\leftarrow 0$}}\;
-         \For{\textcolor{red}{$j\leftarrow 1$ \KwTo $J$}}{
-              \emph{\textcolor{red}{$SUM \leftarrow SUM + (\alpha_{j,p}^{ind} \times X_{t,j}^{ind})$ }}\;
-         }
-         
-         \If { \textcolor{red}{SUM = 0}} {
-         \emph{\textcolor{red}{$U_{t,p}^{ind} \leftarrow 0$}}\;
-         \emph{\textcolor{red}{$\Theta_{t,p}^{ind} \leftarrow 1$}}\;
-         }
-         \Else{
-         \emph{\textcolor{red}{$U_{t,p}^{ind} \leftarrow SUM -1$}}\;
-         \emph{\textcolor{red}{$\Theta_{t,p}^{ind} \leftarrow 0$}}\;
-         }
-     
-     }
-     
-  }
-\emph{\textcolor{red}{return $U^{ind}, \Theta^{ind}$ }} \;
-\caption{O-U-Coverage}
-\label{OU}
-
-\end{algorithm}
-
-
-
-\item \textcolor{red}{\textbf{Evaluate Population:}
-After creating the initial population, each individual is evaluated and assigned a fitness value according to the fitness function is illustrated in Eq. \eqref{eqf}. In the proposed GA, the optimal (or near optimal) candidate solution, is the one with the minimum value for the fitness function. The lower the fitness values been assigned to an individual, the better opportunity it gets survived.  In our works, the function rewards  the decrease in the sensor nodes which cover the same primary point and penalizes the decrease to zero in the sensor nodes which cover the primary point. }
-
-\begin{equation}
- F^{ind} \leftarrow  \sum_{t=1}^{T} \sum_{p=1}^{P} \left(W_{\theta}* \Theta_{t,p} + W_{U} * U_{t,p}  \right)    \label{eqf} 
-\end{equation}
-
-
-\item \textcolor{red}{\textbf{Selection:} In order to generate a new generation, a portion of the existing population is elected based on a fitness function that ranks the fitness of each candidate solution and preferentially select the best solutions. Two parents should be selected to the mating pool.  In the proposed GA-MuDiLCO algorithm, the first parent is selected by using binary tournament selection to select one of the parents \cite{goldberg1991comparative}. In this method,  two individuals are chosen at random from the population and the better of the two
-individuals is selected. If they have similar fitness values, one of them will be selected randomly. The best individual in the population is selected as a second parent.}
-
-
-
-\item \textcolor{red}{\textbf{Crossover:} Crossover is a genetic operator used to take more than one parent solutions and produce a child solution from them. If crossover probability $P_c$ is 100$\%$, then the crossover operation takes place between two individuals. If it is 0$\%$, the  two selected individuals in the mating pool will be the new chromosomes without crossover. In the proposed GA, a two-point crossover is used. Figure \ref{cross} gives an example for a two-point crossover for 8 sensors in the subregion and the schedule for 3 rounds.}
-
-
-\begin{figure}[h!]
-\centering
- \includegraphics [scale = 0.3] {crossover.pdf} 
-\caption{Two-point crossover. }
-\label{cross}
-\end{figure} 
-
-
-\item \textcolor{red}{\textbf{Mutation:}
-Mutation is a divergence operation which introduces random modifications.  The purpose of the mutation is to maintain diversity within the population and prevent premature convergence. Mutation is used to add new genetic information (divergence) in order to achieve a global search over the solution search space and avoid to fall in local optima. The mutation operator in the proposed GA-MuDiLCO works as follow: If mutation probability $P_m$ is 100$\%$, then the mutation operation takes place on the new individual. The round number is selected randomly within (1..T) in the schedule solution. After that one sensor within this round is selected randomly within (1..J). If the sensor is scheduled as active "1", it should be rescheduled to sleep "0". If the sensor is scheduled as sleep, it rescheduled to active only if it has adequate remaining energy.}
-
-
-\item \textcolor{red}{\textbf{Update O-U-Coverage for children:}
-Before evaluating each new individual, Algorithm \ref{OU} is called for each new individual to compute the new undercoverage $Ch.U$ and overcoverage $Ch.\Theta$ parameters. }
-\item \textcolor{red}{\textbf{Evaluate New Individuals:}
-Each new individual is evaluated using Eq. \ref{eqf} but with using the new undercoverage $Ch.U$ and overcoverage $Ch.\Theta$ parameters of the new children.}
-
-\item \textcolor{red}{\textbf{Replacement:}
-After evaluation of new children, Triple Tournament Replacement (TTR) will be applied for each new individual. In TTR strategy, three individuals are selected
-randomly from the population. Find the worst from them and then check its fitness with the new individual fitness. If the fitness of the new individual is better than the fitness of  the worst individual, replace the new individual with the worst individual. Otherwise, the replacement is not done. }
-
-\item \textcolor{red}{\textbf{Stopping criteria:}
-The proposed GA-MuDiLCO stops when the stopping criteria is met. It stops after running for an amount of time in seconds equal to \textbf{Time limit}. The \textbf{Time limit} is the execution time obtained by the optimization solver GLPK for solving the same size of problem. The best solution will be selected as a schedule of sensors for $T$ rounds during the sensing phase in the current period.}
-
-
-
-\end{enumerate} 
-
-\fi
-
-%% EXPERIMENTAL STUDY
-
-\section{Experimental study}
+\section{Experimental framework}
 \label{exp}
 \label{exp}
+
 \subsection{Simulation setup}
 
 We  conducted  a series  of  simulations  to  evaluate  the efficiency  and  the
 \subsection{Simulation setup}
 
 We  conducted  a series  of  simulations  to  evaluate  the efficiency  and  the
@@ -1114,53 +611,28 @@ relevance  of  our   approach,  using  the  discrete   event  simulator  OMNeT++
 \cite{varga}.  The  simulation parameters are summarized  in Table~\ref{table3}.
 Each experiment for a network is run over 25~different random topologies and the
 results presented hereafter are the average of these 25 runs.
 \cite{varga}.  The  simulation parameters are summarized  in Table~\ref{table3}.
 Each experiment for a network is run over 25~different random topologies and the
 results presented hereafter are the average of these 25 runs.
-%Based on the results of our proposed work in~\cite{idrees2014coverage}, we found as the region of interest are divided into larger subregions as the network lifetime increased. In this simulation, the network are divided into 16 subregions. 
 We  performed  simulations for  five  different  densities  varying from  50  to
 250~nodes deployed  over a $50 \times  25~m^2 $ sensing field.   More precisely,
 the deployment  is controlled  at a  coarse scale  in order  to ensure  that the
 deployed nodes can cover the sensing field with the given sensing range.
 
 We  performed  simulations for  five  different  densities  varying from  50  to
 250~nodes deployed  over a $50 \times  25~m^2 $ sensing field.   More precisely,
 the deployment  is controlled  at a  coarse scale  in order  to ensure  that the
 deployed nodes can cover the sensing field with the given sensing range.
 
-%%RC these parameters are realistic?
-%% maybe we can increase the field and sensing range. 5mfor Rs it seems very small... what do the other good papers consider ?
-
 \begin{table}[ht]
 \caption{Relevant parameters for network initializing.}
 \begin{table}[ht]
 \caption{Relevant parameters for network initializing.}
-% title of Table
 \centering
 \centering
-% used for centering table
 \begin{tabular}{c|c}
 \begin{tabular}{c|c}
-% centered columns (4 columns)
-      \hline
-%inserts double horizontal lines
+  \hline
 Parameter & Value  \\ [0.5ex]
 Parameter & Value  \\ [0.5ex]
-   
-%Case & Strategy (with Two Leaders) & Strategy (with One Leader) & Simple Heuristic \\ [0.5ex]
-% inserts table
-%heading
 \hline
 \hline
-% inserts single horizontal line
 Sensing field size & $(50 \times 25)~m^2 $   \\
 Sensing field size & $(50 \times 25)~m^2 $   \\
-% inserting body of the table
-%\hline
 Network size &  50, 100, 150, 200 and 250~nodes   \\
 Network size &  50, 100, 150, 200 and 250~nodes   \\
-%\hline
 Initial energy  & 500-700~joules  \\  
 Initial energy  & 500-700~joules  \\  
-%\hline
 Sensing time for one round & 60 Minutes \\
 $E_{R}$ & 36 Joules\\
 $R_s$ & 5~m   \\     
 Sensing time for one round & 60 Minutes \\
 $E_{R}$ & 36 Joules\\
 $R_s$ & 5~m   \\     
-%\hline
 $W_{\theta}$ & 1   \\
 $W_{\theta}$ & 1   \\
-% [1ex] adds vertical space
-%\hline
 $W_{U}$ & $|P|^2$ \\
 $W_{U}$ & $|P|^2$ \\
-%$P_c$ & 0.95   \\ 
-%$P_m$ & 0.6 \\
-%$S_{pop}$ & 50
-%inserts single line
 \end{tabular}
 \label{table3}
 \end{tabular}
 \label{table3}
-% is used to refer this table in the text
 \end{table}
 
 \textcolor{blue}{Our  protocol  is  declined   into  four  versions:  MuDiLCO-1,
 \end{table}
 
 \textcolor{blue}{Our  protocol  is  declined   into  four  versions:  MuDiLCO-1,
@@ -1169,10 +641,11 @@ $W_{U}$ & $|P|^2$ \\
   may  be prohibitive  when the  size  of the  problem increases,  a time  limit
   threshold has  been fixed when  solving large  instances. In these  cases, the
   solver returns  the best solution  found, which  is not necessary  the optimal
   may  be prohibitive  when the  size  of the  problem increases,  a time  limit
   threshold has  been fixed when  solving large  instances. In these  cases, the
   solver returns  the best solution  found, which  is not necessary  the optimal
-  one. In practice, we only set time  limit values for the three largest network
-  sizes when $T=7$, using the following  respective values (in second): 0.03 for
-  150~nodes, 0.06 for 200~nodes, and 0.08 for 250~nodes.
-% Table \ref{tl} shows time limit values.
+  one. In practice, we only set time  limit values for $T=5$ and $T=7$. In fact,
+  for $T=5$ we limited the time for  250~nodes, whereas for $T=7$ it was for the
+  three  largest network  sizes.  Therefore  we used  the  following values  (in
+  second): 0.03 for  250~nodes when $T=5$, while for $T=7$  we chose 0.03, 0.06,
+  and 0.08 for respectively 150, 200, and 250~nodes.
   These time limit thresholds have been  set empirically. The basic idea consists
   in considering  the average execution  time to  solve the integer  programs to
   optimality, then in  dividing this average time by three  to set the threshold
   These time limit thresholds have been  set empirically. The basic idea consists
   in considering  the average execution  time to  solve the integer  programs to
   optimality, then in  dividing this average time by three  to set the threshold
@@ -1180,30 +653,6 @@ $W_{U}$ & $|P|^2$ \\
   the solver is able  to deliver a feasible solution within  the time limit.  In
   fact, selecting the optimal values for the time limits will be investigated in
   the future.}
   the solver is able  to deliver a feasible solution within  the time limit.  In
   fact, selecting the optimal values for the time limits will be investigated in
   the future.}
-%In Table \ref{tl},  "NO" indicates  that  the  problem has  been  solved to  optimality without time limit.}
-
-%\begin{table}[ht]
-%\caption{Time limit values for MuDiLCO protocol versions }
-%\centering
-%\begin{tabular}{|c|c|c|c|c|}
-% \hline
-% WSN size & MuDiLCO-1 & MuDiLCO-3 & MuDiLCO-5 & MuDiLCO-7 \\ [0.5ex]
-%\hline
-% 50 & NO & NO & NO & NO \\
-% \hline
-%100 & NO & NO & NO & NO \\
-%\hline
-%150 & NO & NO & NO & 0.03 \\
-%\hline
-%200 & NO & NO & NO & 0.06 \\
-% \hline
-% 250 & NO & NO & NO & 0.08 \\
-% \hline
-%\end{tabular}
-
-%\label{tl}
-
-%\end{table}
 
  In the  following, we will make  comparisons with two other  methods. The first
  method,  called DESK  and proposed  by  \cite{ChinhVu}, is  a full  distributed
 
  In the  following, we will make  comparisons with two other  methods. The first
  method,  called DESK  and proposed  by  \cite{ChinhVu}, is  a full  distributed
@@ -1219,7 +668,7 @@ lifetime. Moreover,  it makes  the MuDiLCO protocol  more robust  against random
 network  disconnection due  to node  failures.  However,  too  many subdivisions
 reduce the advantage  of the optimization. In fact, there  is a balance between
 the  benefit  from the  optimization  and the  execution  time  needed to  solve
 network  disconnection due  to node  failures.  However,  too  many subdivisions
 reduce the advantage  of the optimization. In fact, there  is a balance between
 the  benefit  from the  optimization  and the  execution  time  needed to  solve
-it. Therefore, we have set the number of subregions to 16 rather than 32.
+it. In the following we have set the number of subregions to 16.
 
 \subsection{Energy model}
 
 
 \subsection{Energy model}
 
@@ -1228,10 +677,6 @@ We  use an  energy consumption  model  proposed by~\cite{ChinhVu}  and based  on
 for  sending/receiving the packets  is added,  whereas the  part related  to the
 sensing range is removed because we consider a fixed sensing range.
 
 for  sending/receiving the packets  is added,  whereas the  part related  to the
 sensing range is removed because we consider a fixed sensing range.
 
-% We are took into account the energy consumption needed for the high computation during executing the algorithm on the sensor node. 
-%The new energy consumption model will take into account the energy consumption for communication (packet transmission/reception), the radio of the sensor node, data sensing, computational energy of Micro-Controller Unit (MCU) and high computation energy of MCU. 
-%revoir la phrase
-
 For our  energy consumption model, we  refer to the sensor  node Medusa~II which
 uses an Atmels  AVR ATmega103L microcontroller~\cite{raghunathan2002energy}. The
 typical  architecture  of a  sensor  is composed  of  four  subsystems: the  MCU
 For our  energy consumption model, we  refer to the sensor  node Medusa~II which
 uses an Atmels  AVR ATmega103L microcontroller~\cite{raghunathan2002energy}. The
 typical  architecture  of a  sensor  is composed  of  four  subsystems: the  MCU
@@ -1245,36 +690,26 @@ summarized in Table~\ref{table4}.
 
 \begin{table}[ht]
 \caption{The Energy Consumption Model}
 
 \begin{table}[ht]
 \caption{The Energy Consumption Model}
-% title of Table
 \centering
 \centering
-% used for centering table
 \begin{tabular}{|c|c|c|c|c|}
 \begin{tabular}{|c|c|c|c|c|}
-% centered columns (4 columns)
-      \hline
-%inserts double horizontal lines
+  \hline
 Sensor status & MCU & Radio & Sensing & Power (mW) \\ [0.5ex]
 \hline
 Sensor status & MCU & Radio & Sensing & Power (mW) \\ [0.5ex]
 \hline
-% inserts single horizontal line
 LISTENING & on & on & on & 20.05 \\
 LISTENING & on & on & on & 20.05 \\
-% inserting body of the table
 \hline
 ACTIVE & on & off & on & 9.72 \\
 \hline
 SLEEP & off & off & off & 0.02 \\
 \hline
 COMPUTATION & on & on & on & 26.83 \\
 \hline
 ACTIVE & on & off & on & 9.72 \\
 \hline
 SLEEP & off & off & off & 0.02 \\
 \hline
 COMPUTATION & on & on & on & 26.83 \\
-%\hline
-%\multicolumn{4}{|c|}{Energy needed to send/receive a 1-bit} & 0.2575\\
- \hline
+\hline
 \end{tabular}
 
 \label{table4}
 \end{tabular}
 
 \label{table4}
-% is used to refer this table in the text
 \end{table}
 
 For the sake of simplicity we ignore the  energy needed to turn on the radio, to
 start up the sensor node, to move from one status to another, etc.
 \end{table}
 
 For the sake of simplicity we ignore the  energy needed to turn on the radio, to
 start up the sensor node, to move from one status to another, etc.
-%We also do not consider the need of collecting sensing data. PAS COMPRIS
 Thus, when a sensor becomes active (i.e.,  it has already chosen its status), it
 can turn its radio  off to save battery.  MuDiLCO uses two  types of packets for
 communication. The size of the INFO  packet and Active-Sleep packet are 112~bits
 Thus, when a sensor becomes active (i.e.,  it has already chosen its status), it
 can turn its radio  off to save battery.  MuDiLCO uses two  types of packets for
 communication. The size of the INFO  packet and Active-Sleep packet are 112~bits
@@ -1310,10 +745,6 @@ where $n^t$ is  the number of covered  grid points by the active  sensors of all
 subregions during round $t$ in the current sensing phase and $N$ is the total number
 of grid points  in the sensing field of  the network. In our simulations $N = 51
 \times 26 = 1326$ grid points.
 subregions during round $t$ in the current sensing phase and $N$ is the total number
 of grid points  in the sensing field of  the network. In our simulations $N = 51
 \times 26 = 1326$ grid points.
-%The accuracy of this method depends on the distance between grids. In our
-%simulations, the sensing field has been divided into 50 by 25 grid points, which means
-%there are $51 \times 26~ = ~ 1326$ points in total.
-% Therefore, for our simulations, the error in the coverage calculation is less than ~ 1 $\% $.
 
 \item{{\bf Number  of Active Sensors Ratio  (ASR)}:} it is important  to have as
   few  active  nodes  as  possible  in  each  round, in  order  to  minimize  the
 
 \item{{\bf Number  of Active Sensors Ratio  (ASR)}:} it is important  to have as
   few  active  nodes  as  possible  in  each  round, in  order  to  minimize  the
@@ -1342,28 +773,11 @@ network, and $R$ is the total number of subregions in the network.
   $Lifetime_{50}$  divided  by the  number  of rounds.  EC  can  be computed  as
   follows:
 
   $Lifetime_{50}$  divided  by the  number  of rounds.  EC  can  be computed  as
   follows:
 
-  % New version with global loops on period
   \begin{equation*}
     \scriptsize
     \mbox{EC} = \frac{\sum\limits_{m=1}^{M} \left[ \left( E^{\mbox{com}}_m+E^{\mbox{list}}_m+E^{\mbox{comp}}_m \right) +\sum\limits_{t=1}^{T_m} \left( E^{a}_t+E^{s}_t \right) \right]}{\sum\limits_{m=1}^{M} T_m},
   \end{equation*}
 
   \begin{equation*}
     \scriptsize
     \mbox{EC} = \frac{\sum\limits_{m=1}^{M} \left[ \left( E^{\mbox{com}}_m+E^{\mbox{list}}_m+E^{\mbox{comp}}_m \right) +\sum\limits_{t=1}^{T_m} \left( E^{a}_t+E^{s}_t \right) \right]}{\sum\limits_{m=1}^{M} T_m},
   \end{equation*}
 
-
-% Old version with loop on round outside the loop on period
-%  \begin{equation*}
-%    \scriptsize
-%    \mbox{EC} = \frac{\sum\limits_{m=1}^{M_L} \left( E^{\mbox{com}}_m+E^{\mbox{list}}_m+E^{\mbox{comp}}_m \right) +\sum\limits_{t=1}^{T_L} \left( E^{a}_t+E^{s}_t \right)}{T_L},
-%  \end{equation*}
-
-% Ali version 
-%\begin{equation*}
-%\scriptsize
-%\mbox{EC} =  \frac{\mbox{$\sum\limits_{d=1}^D E^c_d$}}{\mbox{$D$}} + \frac{\mbox{$\sum\limits_{d=1}^D %E^l_d$}}{\mbox{$D$}} + \frac{\mbox{$\sum\limits_{d=1}^D E^a_d$}}{\mbox{$D$}} + %\frac{\mbox{$\sum\limits_{d=1}^D E^s_d$}}{\mbox{$D$}}.
-%\end{equation*}
-
-% Old version -> where $M_L$ and  $T_L$ are respectively the number of  periods and rounds during
-%$Lifetime_{95}$ or  $Lifetime_{50}$. 
-% New version
 where  $M$ is  the  number  of periods  and  $T_m$ the  number  of  rounds in  a
 period~$m$, both  during $Lifetime_{95}$  or $Lifetime_{50}$.  The  total energy
 consumed by the  sensors (EC) comes through taking into  consideration four main
 where  $M$ is  the  number  of periods  and  $T_m$ the  number  of  rounds in  a
 period~$m$, both  during $Lifetime_{95}$  or $Lifetime_{50}$.  The  total energy
 consumed by the  sensors (EC) comes through taking into  consideration four main
@@ -1391,6 +805,9 @@ indicate the energy consumed by the whole network in round $t$.
 
 \end{enumerate}
 
 
 \end{enumerate}
 
+\section{Experimental results and analysis}
+\label{analysis}
+
 \subsection{Performance analysis for different number of primary points}
 \label{ch4:sec:04:06}
 
 \subsection{Performance analysis for different number of primary points}
 \label{ch4:sec:04:06}
 
@@ -1401,23 +818,17 @@ comparison,  MuDiLCO-1 protocol  is used  with five  primary point  models, each
 model corresponding to a number of  primary points, which are called Model-5 (it
 uses 5 primary points), Model-9, Model-13, Model-17, and Model-21.
 
 model corresponding to a number of  primary points, which are called Model-5 (it
 uses 5 primary points), Model-9, Model-13, Model-17, and Model-21.
 
-%\begin{enumerate}[i)]
-
-%\item {{\bf Coverage Ratio}}
 \subsubsection{Coverage ratio} 
 
 Figure~\ref{Figures/ch4/R2/CR} shows the average coverage ratio for 150 deployed
 nodes.  As can be seen, at the beginning the models which use a larger number of
 primary points provide slightly better coverage  ratios, but latter they are the
 worst.
 \subsubsection{Coverage ratio} 
 
 Figure~\ref{Figures/ch4/R2/CR} shows the average coverage ratio for 150 deployed
 nodes.  As can be seen, at the beginning the models which use a larger number of
 primary points provide slightly better coverage  ratios, but latter they are the
 worst.
-%Moreover, when the number of periods increases, coverage ratio produced by Model-9, Model-13, Model-17, and Model-21 decreases in comparison with Model-5 due to a larger time computation for the decision process for larger number of primary points.
 Moreover, when the  number of periods increases, the coverage  ratio produced by
 all models  decrease due  to dead nodes.  However, Model-5 is  the one  with the
 slowest decrease due to lower numbers of active sensors in the earlier periods.
 Moreover, when the  number of periods increases, the coverage  ratio produced by
 all models  decrease due  to dead nodes.  However, Model-5 is  the one  with the
 slowest decrease due to lower numbers of active sensors in the earlier periods.
-% smaller time computation of decision process for a smaller number of primary points.
 Overall this  model is slightly more  efficient than the other  ones, because it
 offers a good coverage ratio for a larger number of periods.
 Overall this  model is slightly more  efficient than the other  ones, because it
 offers a good coverage ratio for a larger number of periods.
-%\parskip 0pt
 \begin{figure}[t!]
 \centering
  \includegraphics[scale=0.5] {R2/CR.pdf} 
 \begin{figure}[t!]
 \centering
  \includegraphics[scale=0.5] {R2/CR.pdf} 
@@ -1425,12 +836,9 @@ offers a good coverage ratio for a larger number of periods.
 \label{Figures/ch4/R2/CR}
 \end{figure} 
 
 \label{Figures/ch4/R2/CR}
 \end{figure} 
 
-
-%\item {{\bf Network Lifetime}}
 \subsubsection{Network lifetime}
 
 Finally, we study the effect of increasing the number of primary points on the lifetime of the network. 
 \subsubsection{Network lifetime}
 
 Finally, we study the effect of increasing the number of primary points on the lifetime of the network. 
-%In Figure~\ref{Figures/ch4/R2/LT95} and in Figure~\ref{Figures/ch4/R2/LT50}, network lifetime, $Lifetime95$ and $Lifetime50$ respectively, are illustrated for different network sizes. 
 As       highlighted       by       Figures~\ref{Figures/ch4/R2/LT}(a)       and
 \ref{Figures/ch4/R2/LT}(b), the  network lifetime  obviously increases  when the
 size of the network increases, with  Model-5 which leads to the largest lifetime
 As       highlighted       by       Figures~\ref{Figures/ch4/R2/LT}(a)       and
 \ref{Figures/ch4/R2/LT}(b), the  network lifetime  obviously increases  when the
 size of the network increases, with  Model-5 which leads to the largest lifetime
@@ -1453,30 +861,23 @@ also  the better  one  from the  point  of  view of  coverage  ratio, as  stated
 before. Therefore, we have chosen the model with five primary points for all the
 experiments presented thereafter.
 
 before. Therefore, we have chosen the model with five primary points for all the
 experiments presented thereafter.
 
-%\end{enumerate}
-
-% MICHEL => TO BE CONTINUED
-
-\subsection{Experimental results and analysis}
-
-\subsubsection{Coverage ratio} 
+\subsection{Coverage ratio} 
 
 Figure~\ref{fig3} shows  the average coverage  ratio for 150 deployed  nodes. We
 can notice that for the first thirty rounds both DESK and GAF provide a coverage
 
 Figure~\ref{fig3} shows  the average coverage  ratio for 150 deployed  nodes. We
 can notice that for the first thirty rounds both DESK and GAF provide a coverage
-which is a little bit better than the one of MuDiLCO.  
-%%RC : need to uniformize MuDiLCO or MuDiLCO-T? 
-%%MS : MuDiLCO everywhere
-%%RC maybe increase the size of the figure for the reviewers, no?
-This is due  to the fact that, in comparison with  MuDiLCO which uses optimization
-to put in  SLEEP status redundant sensors, more sensor  nodes remain active with
-DESK and GAF.   As a consequence, when the number of  rounds increases, a larger
-number of node failures  can be observed in DESK and GAF,  resulting in a faster
-decrease of the coverage ratio.   Furthermore, our protocol allows to maintain a
-coverage ratio  greater than  50\% for far  more rounds.  Overall,  the proposed
-sensor  activity scheduling based  on optimization  in MuDiLCO  maintains higher
-coverage ratios of the  area of interest for a larger number  of rounds. It also
-means that MuDiLCO saves more energy,  with less dead nodes, at most for several
-rounds, and thus should extend the network lifetime.
+which is a little  bit better than the one of MuDiLCO.  This  is due to the fact
+that, in comparison with MuDiLCO which  uses optimization to put in SLEEP status
+redundant sensors,  more sensor  nodes remain  active with DESK  and GAF.   As a
+consequence,  when the  number  of rounds  increases, a  larger  number of  node
+failures can be observed in DESK and  GAF, resulting in a faster decrease of the
+coverage ratio.  Furthermore,  our protocol allows to maintain  a coverage ratio
+greater than  50\% for far more  rounds.  Overall, the proposed  sensor activity
+scheduling based on optimization in  MuDiLCO maintains higher coverage ratios of
+the area of interest  for a larger number of rounds. It  also means that MuDiLCO
+saves more energy,  with less dead nodes,  at most for several  rounds, and thus
+should  extend the  network lifetime.  \textcolor{blue}{MuDiLCO-7 seems  to have
+  most of the  time the best coverage  ratio up to round~80,  after MuDiLCO-5 is
+  slightly better.}
 
 \begin{figure}[ht!]
 \centering
 
 \begin{figure}[ht!]
 \centering
@@ -1485,24 +886,17 @@ rounds, and thus should extend the network lifetime.
 \label{fig3}
 \end{figure} 
 
 \label{fig3}
 \end{figure} 
 
-\iffalse
-\textcolor{red}{ We
-can see that for the first thirty nine rounds GA-MuDiLCO provides a little bit better coverage ratio  than MuDiLCO. Both DESK and GAF provide a coverage
-which is a little bit better than the one of MuDiLCO and GA-MuDiLCO for the first thirty rounds because they activate a larger number of nodes during sensing phase. After that GA-MuDiLCO provides a coverage ratio near to the  MuDiLCO and better than DESK and GAF. GA-MuDiLCO gives approximate solution with activation a larger number of nodes than MuDiLCO during sensing phase while it activates a less number of nodes in comparison with both DESK and GAF. MuDiLCO and GA-MuDiLCO clearly outperform DESK and GAF for
-a number of periods between 31 and 103. This is because they optimize the coverage and the lifetime in a wireless sensor network by selecting the best representative sensor nodes to take the responsibility of coverage during the sensing phase.}
-\fi
-
-
-\subsubsection{Active sensors ratio} 
+\subsection{Active sensors ratio} 
 
 It is crucial to have as few active nodes as possible in each round, in order to
 
 It is crucial to have as few active nodes as possible in each round, in order to
-minimize the communication overhead and maximize    the network lifetime. Figure~\ref{fig4}  presents the active  sensor ratio for  150 deployed
+minimize    the    communication    overhead   and    maximize    the    network
+lifetime. Figure~\ref{fig4}  presents the active  sensor ratio for  150 deployed
 nodes all along the network lifetime. It appears that up to round thirteen, DESK
 and GAF have  respectively 37.6\% and 44.8\% of nodes  in ACTIVE status, whereas
 nodes all along the network lifetime. It appears that up to round thirteen, DESK
 and GAF have  respectively 37.6\% and 44.8\% of nodes  in ACTIVE status, whereas
-MuDiLCO clearly outperforms them  with only 24.8\%  of active nodes. 
-%\textcolor{red}{GA-MuDiLCO activates a number of sensor nodes larger than MuDiLCO but lower than both DESK and GAF. GA-MuDiLCO-1, GA-MuDiLCO-3, and GA-MuDiLCO-5 continue in providing a larger number of active sensors until the forty-sixth round after that it provides less number of active nodes due to the died nodes. GA-MuDiLCO-7 provides a larger number of sensor nodes and maintains a better coverage ratio compared to MuDiLCO-7 until the fifty-seventh round.  After the thirty-fifth round, MuDiLCO exhibits larger numbers of active nodes compared with DESK  and GAF, which agrees with  the  dual  observation  of  higher  level  of  coverage  made  previously}.
-Obviously, in that case DESK  and GAF have less active nodes, since  they have activated many nodes  at the beginning. Anyway, MuDiLCO  activates the available nodes in a more efficient manner. 
-%\textcolor{red}{GA-MuDiLCO activates near optimal number of sensor nodes also in efficient manner compared with both DESK  and GAF}.
+MuDiLCO clearly outperforms  them with only 24.8\% of  active nodes.  Obviously,
+in that case DESK and GAF have less active nodes, since they have activated many
+nodes at the beginning. Anyway, MuDiLCO  activates the available nodes in a more
+efficient manner.
 
 \begin{figure}[ht!]
 \centering
 
 \begin{figure}[ht!]
 \centering
@@ -1511,22 +905,15 @@ Obviously, in that case DESK  and GAF have less active nodes, since  they have a
 \label{fig4}
 \end{figure} 
 
 \label{fig4}
 \end{figure} 
 
-%\textcolor{red}{GA-MuDiLCO activates a sensor nodes larger than MuDiLCO but lower than both DESK and GAF }
-
-
-\subsubsection{Stopped simulation runs}
-%The results presented in this experiment, is to show the comparison of our MuDiLCO protocol with other two approaches from the point of view the stopped simulation runs per round. Figure~\ref{fig6} illustrates the percentage of stopped simulation
-%runs per round for 150 deployed nodes. 
+\subsection{Stopped simulation runs}
 
 Figure~\ref{fig6} reports the cumulative  percentage of stopped simulations runs
 
 Figure~\ref{fig6} reports the cumulative  percentage of stopped simulations runs
-per round for  150 deployed nodes. This figure gives the  breakpoint for each method.  DESK stops first,  after approximately 45~rounds, because it consumes the
-more energy by  turning on a large number of redundant  nodes during the sensing
-phase. GAF  stops secondly for the  same reason than  DESK. 
-%\textcolor{red}{GA-MuDiLCO  stops thirdly for the  same reason than  DESK and GAF.} \textcolor{red}{MuDiLCO and GA-MuDiLCO overcome}
-%DESK and GAF because \textcolor{red}{they activate less number of sensor nodes, as well as }the optimization process distributed on several subregions leads to coverage  preservation and  so extends  the network  lifetime.  
-Let us emphasize that the  simulation continues as long as a network  in a subregion is still connected. 
-
-%%% The optimization effectively continues as long as a network in a subregion is still connected. A VOIR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+per round  for 150  deployed nodes.  This figure gives  the breakpoint  for each
+method.  DESK  stops first, after  approximately 45~rounds, because  it consumes
+the more  energy by  turning on  a large  number of  redundant nodes  during the
+sensing  phase. GAF  stops  secondly for  the  same reason  than  DESK.  Let  us
+emphasize that the simulation  continues as long as a network  in a subregion is
+still connected.
 
 \begin{figure}[ht!]
 \centering
 
 \begin{figure}[ht!]
 \centering
@@ -1535,7 +922,7 @@ Let us emphasize that the  simulation continues as long as a network  in a subre
 \label{fig6}
 \end{figure} 
 
 \label{fig6}
 \end{figure} 
 
-\subsubsection{Energy consumption} \label{subsec:EC}
+\subsection{Energy consumption} \label{subsec:EC}
 
 We  measure  the  energy  consumed  by the  sensors  during  the  communication,
 listening, computation, active, and sleep status for different network densities
 
 We  measure  the  energy  consumed  by the  sensors  during  the  communication,
 listening, computation, active, and sleep status for different network densities
@@ -1556,17 +943,20 @@ network sizes, for $Lifetime_{95}$ and $Lifetime_{50}$.
 \end{figure} 
 
 The  results  show  that  MuDiLCO  is  the  most  competitive  from  the  energy
 \end{figure} 
 
 The  results  show  that  MuDiLCO  is  the  most  competitive  from  the  energy
-consumption point of view.  The  other approaches have a high energy consumption
-due  to activating a  larger number  of redundant  nodes as  well as  the energy consumed during  the different  status of the  sensor node.
-% Among  the different versions of our protocol, the MuDiLCO-7  one consumes more energy than the other
-%versions. This is  easy to understand since the bigger the  number of rounds and the number of  sensors involved in the integer program are,  the larger the time computation to solve the optimization problem is. To improve the performances of MuDiLCO-7, we  should increase the  number of subregions  in order to  have less sensors to consider in the integer program.
-%\textcolor{red}{As shown in Figure~\ref{fig7}, GA-MuDiLCO consumes less energy than both DESK and GAF, but a little bit higher than MuDiLCO  because it provides a near optimal solution by activating a larger number of nodes during the sensing phase.  GA-MuDiLCO consumes less energy in comparison with MuDiLCO-7 version, especially for the dense networks. However, MuDiLCO protocol and GA-MuDiLCO protocol are the most competitive from the energy
-%consumption point of view. The other approaches have a high energy consumption
-%due to activating a larger number of redundant nodes.}
-%In fact,  a distributed optimization decision, which produces T rounds, on the subregions is  greatly reduced the cost of communications and the time of listening as well as the energy needed for sensing phase and computation so thanks to the partitioning of the initial network into several independent subnetworks and producing T rounds for each subregion periodically. 
+consumption point of view.  The other  approaches have a high energy consumption
+due to  activating a  larger number  of redundant  nodes as  well as  the energy
+consumed during the different status of the sensor node.
 
 
+% TO BE CONTINUED
+\textcolor{blue}{Energy consumption increases with the  size of the networks and
+  the  number  of  rounds.  The  curve  Unlimited-MuDiLCO-7  shows  that  energy
+  consumption due to  the time spent to solve the  integer program to optimality
+  increases drastically with  the size of the network. When  the resolution time
+  is limited for large network sizes, the energy consumption remains of the same
+  order whatever the MuDiLCO version.}
 
 
-\subsubsection{Execution time}
+
+\subsection{Execution time}
 \label{et}
 We observe  the impact of the  network size and of  the number of  rounds on the
 computation  time.   Figure~\ref{fig77} gives  the  average  execution times  in
 \label{et}
 We observe  the impact of the  network size and of  the number of  rounds on the
 computation  time.   Figure~\ref{fig77} gives  the  average  execution times  in
@@ -1599,7 +989,7 @@ optimization problem.
 
 %While MuDiLCO-1, 3, and 5 solves the optimization process with suitable execution times to be used on wireless sensor network because it distributed on larger number of small subregions as well as it is used acceptable number of round(s) T.  We think that in distributed fashion the solving of the optimization problem to produce T rounds in a subregion can be tackled by sensor nodes. Overall, to be able to deal with very large networks, a distributed method is clearly required.
 
 
 %While MuDiLCO-1, 3, and 5 solves the optimization process with suitable execution times to be used on wireless sensor network because it distributed on larger number of small subregions as well as it is used acceptable number of round(s) T.  We think that in distributed fashion the solving of the optimization problem to produce T rounds in a subregion can be tackled by sensor nodes. Overall, to be able to deal with very large networks, a distributed method is clearly required.
 
-\subsubsection{Network lifetime}
+\subsection{Network lifetime}
 
 The next  two figures,  Figures~\ref{fig8}(a) and \ref{fig8}(b),  illustrate the
 network lifetime  for different network sizes,  respectively for $Lifetime_{95}$
 
 The next  two figures,  Figures~\ref{fig8}(a) and \ref{fig8}(b),  illustrate the
 network lifetime  for different network sizes,  respectively for $Lifetime_{95}$