From: Karine Deschinkel Date: Fri, 4 Sep 2015 09:27:41 +0000 (+0200) Subject: ok X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/JournalMultiPeriods.git/commitdiff_plain/46e6f7cd7d85049c4f767edfe1091ef287cdc1e0 ok --- diff --git a/article.tex b/article.tex index 0894ca4..b37791f 100644 --- a/article.tex +++ b/article.tex @@ -805,7 +805,7 @@ Subject to \end{equation} \begin{equation} - \sum_{t=1}^{T} X_{t,j} \leq \floor*{RE_{j}/E_{R}} \hspace{6 mm} \forall j \in J, t = 1,\dots,T + \sum_{t=1}^{T} X_{t,j} \leq \floor*{RE_{j}/E_{R}} \hspace{10 mm}\forall j \in J\hspace{6 mm} \label{eq144} \end{equation} @@ -853,6 +853,8 @@ to guarantee that the maximum number of points are covered during each round. %% MS W_theta is smaller than W_u => problem with the following sentence In our simulations priority is given to the coverage by choosing $W_{U}$ very large compared to $W_{\theta}$. + +\textcolor{green}{The size of the problem depends on the number of variables and constraints. The number of variables is linked to the number of alive sensors $A \subset J$, the number of rounds $T$, and the number of primary points $P$. Thus the integer program contains $A*T$ variables of type $X_{t,j}$, $P*T$ overcoverage variables and $P*T$ undercoverage variables. The number of constraints is equal to $P*T$ (for constraints (\ref{eq16})) $+$ $A$ (for constraints (\ref{eq144})).} %The Active-Sleep packet includes the schedule vector with the number of rounds that should be applied by the receiving sensor node during the sensing phase.