\centering
\includegraphics[scale=0.20]{fig21.pdf}\\~ ~ ~ ~ ~(a)
\includegraphics[scale=0.20]{fig22.pdf}\\~ ~ ~ ~ ~(b)
-\includegraphics[scale=0.20]{principles13.eps}\\~ ~ ~ ~ ~(c)
+\includegraphics[scale=0.20]{principles13.pdf}\\~ ~ ~ ~ ~(c)
%\includegraphics[scale=0.10]{fig25.pdf}\\~ ~ ~(d)
%\includegraphics[scale=0.10]{fig26.pdf}\\~ ~ ~(e)
%\includegraphics[scale=0.10]{fig27.pdf}\\~ ~ ~(f)
simultaneously. Our DiLCO protocol works in rounds fashion as shown in figure~\ref{fig2}.
\begin{figure}[ht!]
\centering
-\includegraphics[width=95mm]{FirstModel.eps} % 70mm
+\includegraphics[width=95mm]{FirstModel.pdf} % 70mm
\caption{DiLCO protocol}
\label{fig2}
\end{figure}
\parskip 0pt
\begin{figure}[h!]
\centering
- \includegraphics[scale=0.5] {R1/CR.eps}
+ \includegraphics[scale=0.5] {R1/CR.pdf}
\caption{The impact of the number of rounds on the coverage ratio for 150 deployed nodes}
\label{fig3}
\end{figure}
Figure~\ref{fig4} shows the average active nodes ratio for 150 deployed nodes.
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R1/ASR.eps}
+\includegraphics[scale=0.5]{R1/ASR.pdf}
\caption{The impact of the number of rounds on the active sensors ratio for 150 deployed nodes }
\label{fig4}
\end{figure}
Figure~\ref{fig6} illustrates the percentage of stopped simulation runs per round for 150 deployed nodes.
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.43]{R1/SR.eps}
+\includegraphics[scale=0.43]{R1/SR.pdf}
\caption{The percentage of stopped simulation runs compared to the number of rounds for 150 deployed nodes }
\label{fig6}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R1/EC95.eps}
+\includegraphics[scale=0.5]{R1/EC95.pdf}
\caption{The Energy Consumption for Lifetime95}
\label{fig95}
\end{figure}
As shown in Figures~\ref{fig95} and ~\ref{fig50} , DiLCO-2 consumes more energy than the other versions of DiLCO, especially for large sizes of network. This is easy to understand since the bigger the number of sensors involved in the integer program, the larger the time computation to solve the optimization problem as well as the higher energy consumed during the communication.
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R1/EC50.eps}
+\includegraphics[scale=0.5]{R1/EC50.pdf}
\caption{The Energy Consumption for Lifetime50}
\label{fig50}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R1/T.eps}
+\includegraphics[scale=0.5]{R1/T.pdf}
\caption{Execution Time (in seconds)}
\label{fig8}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R1/LT95.eps}
+\includegraphics[scale=0.5]{R1/LT95.pdf}
\caption{The Network Lifetime for $Lifetime95$}
\label{figLT95}
\end{figure}
Comparison shows that the DiLCO-16 protocol, which uses 16 leaders, is the best one because it is used less number of active nodes during the network lifetime compared with DiLCO-32. It also means that distributing the protocol in each node and subdividing the sensing field into many subregions, which are managed independently and simultaneously, is the most relevant way to maximize the lifetime of a network.
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R1/LT50.eps}
+\includegraphics[scale=0.5]{R1/LT50.pdf}
\caption{The Network Lifetime for $Lifetime50$}
\label{figLT50}
\end{figure}
\parskip 0pt
\begin{figure}[h!]
\centering
- \includegraphics[scale=0.5] {R2/CR.eps}
+ \includegraphics[scale=0.5] {R2/CR.pdf}
\caption{The impact of the number of rounds on the coverage ratio for 150 deployed nodes}
\label{fig33}
\end{figure}
Figure~\ref{fig44} shows the average active nodes ratio for 150 deployed nodes.
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R2/ASR.eps}
+\includegraphics[scale=0.5]{R2/ASR.pdf}
\caption{The impact of the number of rounds on the active sensors ratio for 150 deployed nodes }
\label{fig44}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R2/SR.eps}
+\includegraphics[scale=0.5]{R2/SR.pdf}
\caption{The percentage of stopped simulation runs compared to the number of rounds for 150 deployed nodes }
\label{fig66}
\end{figure}
In this experiment, we study the effect of increasing the primary points to represent the area of the sensor on the energy consumed by the wireless sensor network for different network densities. Figures~\ref{fig2EC95} and ~\ref{fig2EC50} illustrate the energy consumption for different network sizes for $Lifetime95$ and $Lifetime50$.
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R2/EC95.eps}
+\includegraphics[scale=0.5]{R2/EC95.pdf}
\caption{The Energy Consumption with $95\%-Lifetime$}
\label{fig2EC95}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R2/EC50.eps}
+\includegraphics[scale=0.5]{R2/EC50.pdf}
\caption{The Energy Consumption with $Lifetime50$}
\label{fig2EC50}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R2/T.eps}
+\includegraphics[scale=0.5]{R2/T.pdf}
\caption{The Execution Time(s) vs The Number of Sensors }
\label{figt}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R2/LT95.eps}
+\includegraphics[scale=0.5]{R2/LT95.pdf}
\caption{The Network Lifetime for $Lifetime95$}
\label{fig2LT95}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R2/LT50.eps}
+\includegraphics[scale=0.5]{R2/LT50.pdf}
\caption{The Network Lifetime for $Lifetime50$}
\label{fig2LT50}
\end{figure}
\parskip 0pt
\begin{figure}[h!]
\centering
- \includegraphics[scale=0.5] {R3/CR.eps}
+ \includegraphics[scale=0.5] {R3/CR.pdf}
\caption{The coverage ratio for 150 deployed nodes}
\label{fig333}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R3/ASR.eps}
+\includegraphics[scale=0.5]{R3/ASR.pdf}
\caption{The active sensors ratio for 150 deployed nodes }
\label{fig444}
\end{figure}
runs per round for 150 deployed nodes.
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R3/SR.eps}
+\includegraphics[scale=0.5]{R3/SR.pdf}
\caption{The percentage of stopped simulation runs compared to the number of rounds for 150 deployed nodes }
\label{fig666}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R3/EC95.eps}
+\includegraphics[scale=0.5]{R3/EC95.pdf}
\caption{The Energy Consumption with $95\%-Lifetime$}
\label{fig3EC95}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R3/EC50.eps}
+\includegraphics[scale=0.5]{R3/EC50.pdf}
\caption{The Energy Consumption with $Lifetime50$}
\label{fig3EC50}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R3/LT95.eps}
+\includegraphics[scale=0.5]{R3/LT95.pdf}
\caption{The Network Lifetime for $Lifetime95$}
\label{fig3LT95}
\end{figure}
\begin{figure}[h!]
\centering
-\includegraphics[scale=0.5]{R3/LT50.eps}
+\includegraphics[scale=0.5]{R3/LT50.pdf}
\caption{The Network Lifetime for $Lifetime50$}
\label{fig3LT50}
\end{figure}