+communications to perform matrix-vector products and reduction operations.
+Preconditionners can be used in order to increase the convergence of iterative
+solvers. However, most of the good preconditionners are not sclalable when
+thousands of cores are used.
+
+
+A completer...
+On ne peut pas parler de tout...
+
+\section{Related works}
+
+
+A general framework for studying parallel multisplitting has been presented in
+\cite{o1985multi} by O'Leary and White. Convergence conditions are given for the
+most general case. Many authors improved multisplitting algorithms by proposing
+for example a asynchronous version \cite{bru1995parallel} and convergence
+condition \cite{bai1999block,bahi2000asynchronous} in this case or other
+two-stage algorithms~\cite{frommer1992h,bru1995parallel}
+
+In \cite{huang1993krylov}, the authors proposed a parallel multisplitting
+algorithm in which all the tasks except one are devoted to solve a sub-block of
+the splitting and to send their local solution to the first task which is in
+charge to combine the vectors at each iteration. These vectors form a Krylov
+basis for which the first tasks minimize the error function over the basis to
+increase the convergence, then the other tasks receive the update solution until
+convergence of the global system.
+
+
+
+In \cite{couturier2008gremlins}, the authors proposed practical implementations
+of multisplitting algorithms that take benefit from multisplitting algorithms to
+solve large scale linear systems. Inner solvers could be based on scalar direct
+method with the LU method or scalar iterative one with GMRES.
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\section{A two-stage method with a minimization}
+Let $Ax=b$ be a given sparse and large linear system of $n$ equations
+to solve in parallel on $L$ clusters, physically adjacent or geographically
+distant, where $A\in\mathbb{R}^{n\times n}$ is a square and nonsingular
+matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$
+is the right-hand side vector. The multisplitting of this linear system
+is defined as follows:
+\begin{equation}
+\left\{
+\begin{array}{lll}
+A & = & [A_{1}, \ldots, A_{L}]\\
+x & = & [X_{1}, \ldots, X_{L}]\\
+b & = & [B_{1}, \ldots, B_{L}]
+\end{array}
+\right.
+\label{sec03:eq01}
+\end{equation}
+where for all $l\in\{1,\ldots,L\}$ $A_l$ is a rectangular block of size $n_l\times n$
+and $X_l$ and $B_l$ are sub-vectors of size $n_l$, such that $\sum_ln_l=n$. In this
+case, we use a row-by-row splitting without overlapping in such a way that successive
+rows of the sparse matrix $A$ and both vectors $x$ and $b$ are assigned to a cluster.
+So, the multisplitting format of the linear system is defined as follows:
+\begin{equation}
+\forall l\in\{1,\ldots,L\} \mbox{,~} \displaystyle\sum_{i=1}^{l-1}A_{li}X_i + A_{ll}X_l + \displaystyle\sum_{i=l+1}^{L}A_{li}X_i = B_l,
+\label{sec03:eq02}
+\end{equation}
+where $A_{li}$ is a block of size $n_l\times n_i$ of the rectangular matrix $A_l$, $X_i\neq X_l$
+is a sub-vector of size $n_i$ of the solution vector $x$ and $\sum_{i<l}n_i+\sum_{i>l}n_i+n_l=n$,
+for all $i\in\{1,\ldots,l-1,l+1,\ldots,L\}$. Therefore, each cluster $l$ is in charge of solving
+the following spare sub-linear system:
+\begin{equation}
+\left\{
+\begin{array}{l}
+A_{ll}X_l = Y_l \mbox{,~such that}\\
+Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i,
+\end{array}
+\right.
+\label{sec03:eq03}
+\end{equation}
+where the sub-vectors $X_i$ define the data dependencies between the cluster $l$ and other clusters.
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%