-is solved independently by a cluster of processors and communication are required to
-update the right-hand side vectors $Y_l$, such that the vectors $X_i$ represent the data
-dependencies between the clusters. In this work, we use the GMRES method as an inner
-iteration method for solving the sub-systems~(\ref{sec03:eq03}). It is a well-known
-iterative method which gives good performances for solving sparse linear systems in
-parallel on a cluster of processors.
-
-It should be noted that the convergence of the inner iterative solver for the different
-linear sub-systems~(\ref{sec03:eq03}) does not necessarily involve the convergence of the
-multisplitting method. It strongly depends on the properties of the sparse linear system
-to be solved and the computing environment~\cite{o1985multi,ref18}. Furthermore, the multisplitting
-of the linear system among several clusters of processors increases the spectral radius
-of the iteration matrix, thereby slowing the convergence. In this paper, we based on the
-work presented in~\cite{huang1993krylov} to increase the convergence and improve the
-scalability of the multisplitting methods.
-
-In order to accelerate the convergence, we implement the outer iteration of the multisplitting
-solver as a Krylov subspace method which minimizes some error function over a Krylov subspace~\cite{S96}.
-The Krylov space of the method that we used is spanned by a basis composed of the solutions issued from
-solving the $L$ splittings~(\ref{sec03:eq03})
+is solved independently by a cluster of processors and communication
+are required to update the right-hand side vectors $Y_l$, such that
+the vectors $X_i$ represent the data dependencies between the
+clusters. In this work, we use the GMRES method as an inner iteration
+method for solving the sub-systems~(\ref{sec03:eq03}). It is a
+well-known iterative method which gives good performances for solving
+sparse linear systems in parallel on a cluster of processors.
+
+It should be noted that the convergence of the inner iterative solver
+for the different linear sub-systems~(\ref{sec03:eq03}) does not
+necessarily involve the convergence of the multisplitting method. It
+strongly depends on the properties of the sparse linear system to be
+solved and the computing
+environment~\cite{o1985multi,ref18}. Furthermore, the multisplitting
+of the linear system among several clusters of processors increases
+the spectral radius of the iteration matrix, thereby slowing the
+convergence. In this paper, we based on the work presented
+in~\cite{huang1993krylov} to increase the convergence and improve the
+scalability of the multisplitting methods.
+
+In order to accelerate the convergence, we implement the outer
+iteration of the multisplitting solver as a Krylov subspace method
+which minimizes some error function over a Krylov subspace~\cite{S96}.
+The Krylov space of the method that we used is spanned by a basis
+composed of successive solutions issued from solving the $L$
+splittings~(\ref{sec03:eq03})