+On ne peut pas parler de tout...\\
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%
+%% BEGIN
+%%%%%%%%%%%%%%%%%%%%%%%
+The key idea of the multisplitting method for solving a large system
+of linear equations $Ax=b$ consists in partitioning the matrix $A$ in
+$L$ several ways
+\begin{equation}
+A = M_l - N_l,~l\in\{1,\ldots,L\},
+\label{eq01}
+\end{equation}
+where $M_l$ are nonsingular matrices. Then the linear system is solved
+by iteration based on the multisplittings as follows
+\begin{equation}
+x^{k+1}=\displaystyle\sum^L_{l=1} E_l M^{-1}_l (N_l x^k + b),~k=1,2,3,\ldots
+\label{eq02}
+\end{equation}
+where $E_l$ are non-negative and diagonal weighting matrices such that
+$\sum^L_{l=1}E_l=I$ ($I$ is an identity matrix). Thus the convergence
+of such a method is dependent on the condition
+\begin{equation}
+\rho(\displaystyle\sum^L_{l=1}E_l M^{-1}_l N_l)<1.
+\label{eq03}
+\end{equation}
+
+The advantage of the multisplitting method is that at each iteration
+$k$ there are $L$ different linear sub-systems
+\begin{equation}
+v_l^k=M^{-1}_l N_l x_l^{k-1} + M^{-1}_l b,~l\in\{1,\ldots,L\},
+\label{eq04}
+\end{equation}
+to be solved independently by a direct or an iterative method, where
+$v_l^k$ is the solution of the local sub-system. Thus, the
+calculations of $v_l^k$ may be performed in parallel by a set of
+processors. A multisplitting method using an iterative method for
+solving the $L$ linear sub-systems is called an inner-outer iterative
+method or a two-stage method. The results $v_l^k$ obtained from the
+different splittings~(\ref{eq04}) are combined to compute the solution
+$x^k$ of the linear system by using the diagonal weighting matrices
+\begin{equation}
+x^k = \displaystyle\sum^L_{l=1} E_l v_l^k,
+\label{eq05}
+\end{equation}
+In the case where the diagonal weighting matrices $E_l$ have only zero
+and one factors (i.e. $v_l^k$ are disjoint vectors), the
+multisplitting method is non-overlapping and corresponds to the block
+Jacobi method.
+%%%%%%%%%%%%%%%%%%%%%%%
+%% END
+%%%%%%%%%%%%%%%%%%%%%%%