]> AND Private Git Repository - Krylov_multi.git/blobdiff - krylov_multi.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
11-01-2014 V1
[Krylov_multi.git] / krylov_multi.tex
index c3f9e1c04307dd0b87a9232585d39b9ad37810d9..1b8b43e88a023a93d971a4113ee38a6d75c81452 100644 (file)
@@ -1,7 +1,264 @@
 \documentclass{article}
+\usepackage[utf8]{inputenc}
+\usepackage{amsfonts,amssymb}
+\usepackage{amsmath}
+\usepackage{graphicx}
+
+\title{A scalable multisplitting algorithm for solving large sparse linear systems} 
+
+
 
 \begin{document}
+\author{Raphaël Couturier \and Lilia Ziane Khodja}
+
+\maketitle
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\begin{abstract}
+In  this  paper we  revist  the  krylov  multisplitting algorithm  presented  in
+\cite{huang1993krylov}  which  uses  a  scalar  method to  minimize  the  krylov
+iterations computed by a multisplitting algorithm. Our new algorithm is based on
+a  parallel multisplitting  algorithm  with few  blocks  of large  size using  a
+parallel GMRES method inside each block and on a parallel krylov minimization in
+order to improve the convergence. Some large scale experiments with a 3D Poisson
+problem  are presented.   They  show  the obtained  improvements  compared to  a
+classical GMRES both in terms of number of iterations and execution times.
+\end{abstract}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\section{Introduction}
+
+Iterative methods are used to solve  large sparse linear systems of equations of
+the form  $Ax=b$ because they are  easier to parallelize than  direct ones. Many
+iterative  methods have  been proposed  and  adapted by  many researchers.   For
+example, the GMRES method and the  Conjugate Gradient method are very well known
+and  used by  many researchers  ~\cite{S96}. Both  the method  are based  on the
+Krylov subspace which consists in forming  a basis of the sequence of successive
+matrix powers times the initial residual.
+
+When  solving large  linear systems  with  many cores,  iterative methods  often
+suffer  from scalability problems.   This is  due to  their need  for collective
+communications  to  perform  matrix-vector  products and  reduction  operations.
+Preconditionners can be  used in order to increase  the convergence of iterative
+solvers.   However, most  of the  good preconditionners  are not  sclalable when
+thousands of cores are used.
+
+
+A completer...
+On ne peut pas parler de tout...\\
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%
+%% BEGIN
+%%%%%%%%%%%%%%%%%%%%%%%
+The key idea  of the multisplitting method for  solving a large system
+of linear equations $Ax=b$ consists  in partitioning the matrix $A$ in
+$L$ several ways
+\begin{equation}
+A = M_l - N_l,~l\in\{1,\ldots,L\},
+\label{eq01}
+\end{equation}
+where $M_l$ are nonsingular matrices. Then the linear system is solved
+by iteration based on the multisplittings as follows
+\begin{equation}
+x^{k+1}=\displaystyle\sum^L_{l=1} E_l M^{-1}_l (N_l x^k + b),~k=1,2,3,\ldots
+\label{eq02}
+\end{equation}
+where $E_l$ are non-negative and diagonal weighting matrices such that
+$\sum^L_{l=1}E_l=I$ ($I$ is an identity matrix).  Thus the convergence
+of such a method is dependent on the condition
+\begin{equation}
+\rho(\displaystyle\sum^L_{l=1}E_l M^{-1}_l N_l)<1.
+\label{eq03}
+\end{equation}
+
+The advantage of  the multisplitting method is that  at each iteration
+$k$ there are $L$ different linear sub-systems
+\begin{equation}
+v_l^k=M^{-1}_l N_l x_l^{k-1} + M^{-1}_l b,~l\in\{1,\ldots,L\},
+\label{eq04}
+\end{equation}
+to be solved  independently by a direct or  an iterative method, where
+$v_l^k$  is   the  solution  of   the  local  sub-system.   Thus,  the
+calculations  of $v_l^k$  may be  performed in  parallel by  a  set of
+processors.   A multisplitting  method using  an iterative  method for
+solving the $L$ linear  sub-systems is called an inner-outer iterative
+method or a  two-stage method.  The results $v_l^k$  obtained from the
+different splittings~(\ref{eq04}) are combined to compute the solution
+$x^k$ of the linear system by using the diagonal weighting matrices
+\begin{equation}
+x^k = \displaystyle\sum^L_{l=1} E_l v_l^k,
+\label{eq05}
+\end{equation}    
+In the case where the diagonal weighting matrices $E_l$ have only zero
+and   one   factors  (i.e.   $v_l^k$   are   disjoint  vectors),   the
+multisplitting method is non-overlapping  and corresponds to the block
+Jacobi method.
+%%%%%%%%%%%%%%%%%%%%%%%
+%% END
+%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Related works}
+
+
+A general framework  for studying parallel multisplitting has  been presented in
+\cite{o1985multi} by O'Leary and White. Convergence conditions are given for the
+most general case.  Many authors improved multisplitting algorithms by proposing
+for  example  an  asynchronous  version  \cite{bru1995parallel}  and  convergence
+conditions  \cite{bai1999block,bahi2000asynchronous}   in  this  case   or  other
+two-stage algorithms~\cite{frommer1992h,bru1995parallel}.
+
+In  \cite{huang1993krylov},  the  authors  proposed  a  parallel  multisplitting
+algorithm in which all the tasks except  one are devoted to solve a sub-block of
+the splitting  and to send their  local solution to  the first task which  is in
+charge to  combine the vectors at  each iteration.  These vectors  form a Krylov
+basis for  which the first task minimizes  the error function over  the basis to
+increase the convergence, then the other tasks receive the update solution until
+convergence of the global system. 
+
+
+
+In \cite{couturier2008gremlins}, the  authors proposed practical implementations
+of multisplitting algorithms that take benefit from multisplitting algorithms to
+solve large scale linear systems. Inner  solvers could be based on scalar direct
+method with the LU method or scalar iterative one with GMRES.
+
+In~\cite{prace-multi},  the  authors  have  proposed a  parallel  multisplitting
+algorithm in which large block are solved using a GMRES solver. The authors have
+performed large scale experimentations upto  32.768 cores and they conclude that
+asynchronous  multisplitting algorithm  could more  efficient  than traditionnal
+solvers on exascale architecture with hunders of thousands of cores.
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\section{A two-stage method with a minimization}
+Let $Ax=b$ be a given sparse  and large linear system of $n$ equations
+to  solve  in  parallel   on  $L$  clusters,  physically  adjacent  or
+geographically distant, where $A\in\mathbb{R}^{n\times n}$ is a square
+and  nonsingular matrix, $x\in\mathbb{R}^{n}$  is the  solution vector
+and   $b\in\mathbb{R}^{n}$  is   the  right-hand   side   vector.  The
+multisplitting of this linear system is defined as follows:
+\begin{equation}
+\left\{
+\begin{array}{lll}
+A & = & [A_{1}, \ldots, A_{L}]\\
+x & = & [X_{1}, \ldots, X_{L}]\\
+b & = & [B_{1}, \ldots, B_{L}]
+\end{array}
+\right.
+\label{sec03:eq01}
+\end{equation}  
+where for  $l\in\{1,\ldots,L\}$, $A_l$ is a rectangular  block of size
+$n_l\times n$ and $X_l$ and  $B_l$ are sub-vectors of size $n_l$, such
+that  $\sum_ln_l=n$.  In this  case,  we  use  a row-by-row  splitting
+without overlapping in  such a way that successive  rows of the sparse
+matrix $A$ and  both vectors $x$ and $b$ are  assigned to one cluster.
+So,  the multisplitting  format of  the  linear system  is defined  as
+follows:
+\begin{equation}
+\forall l\in\{1,\ldots,L\} \mbox{,~} \displaystyle\sum_{i=1}^{l-1}A_{li}X_i + A_{ll}X_l + \displaystyle\sum_{i=l+1}^{L}A_{li}X_i = B_l, 
+\label{sec03:eq02}
+\end{equation} 
+where $A_{li}$ is  a block of size $n_l\times  n_i$ of the rectangular
+matrix  $A_l$, $X_i\neq  X_l$ is  a sub-vector  of size  $n_i$  of the
+solution vector  $x$ and $\sum_{i<l}n_i+\sum_{i>l}n_i+n_l=n$,  for all
+$i\in\{1,\ldots,l-1,l+1,\ldots,L\}$.
+
+The multisplitting method proceeds by iteration for solving the linear
+system in such a way each sub-system
+\begin{equation}
+\left\{
+\begin{array}{l}
+A_{ll}X_l = Y_l \mbox{,~such that}\\
+Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i,
+\end{array}
+\right.
+\label{sec03:eq03}
+\end{equation}
+is solved  independently by a cluster of  processors and communication
+are required  to update the  right-hand side vectors $Y_l$,  such that
+the  vectors  $X_i$  represent   the  data  dependencies  between  the
+clusters. In this work, we use  the GMRES method as an inner iteration
+method  for  solving   the  sub-systems~(\ref{sec03:eq03}).  It  is  a
+well-known iterative method which  gives good performances for solving
+sparse linear systems in parallel on a cluster of processors.
+
+It should be noted that  the convergence of the inner iterative solver
+for  the  different  linear  sub-systems~(\ref{sec03:eq03})  does  not
+necessarily involve  the convergence of the  multisplitting method. It
+strongly depends on  the properties of the sparse  linear system to be
+solved                 and                the                computing
+environment~\cite{o1985multi,ref18}.  Furthermore,  the multisplitting
+of the  linear system among  several clusters of  processors increases
+the  spectral radius  of  the iteration  matrix,  thereby slowing  the
+convergence.  In   this  paper,  we   based  on  the   work  presented
+in~\cite{huang1993krylov} to increase  the convergence and improve the
+scalability of the multisplitting methods.
+
+In  order  to  accelerate  the  convergence, we  implement  the  outer
+iteration  of the multisplitting  solver as  a Krylov  subspace method
+which minimizes some error function over a Krylov subspace~\cite{S96}.
+The Krylov  space of  the method that  we used  is spanned by  a basis
+composed  of   successive  solutions  issued  from   solving  the  $L$
+splittings~(\ref{sec03:eq03})
+\begin{equation}
+S=\{x^1,x^2,\ldots,x^s\},~s\leq n,
+\label{sec03:eq04}
+\end{equation}
+where   for  $k\in\{1,\ldots,s\}$,  $x^k=[X_1^k,\ldots,X_L^k]$   is  a
+solution of the  global linear system.%The advantage such a method is that the Krylov subspace does not need to be spanned by an orthogonal basis.
+The advantage  of such a  Krylov subspace is  that we need  neither an
+orthogonal basis  nor synchronizations between  the different clusters
+to generate this basis.
+
+The multisplitting method is periodically restarted every $s$ iterations
+with a new initial guess $\tilde{x}=S\alpha$ which minimizes the error
+function $\|b-Ax\|_2$ over the Krylov subspace spanned by the vectors of $S$.
+So, $\alpha$ is defined as the solution of the large overdetermined linear system
+\begin{equation}
+B\alpha=b,
+\label{sec03:eq05}
+\end{equation}
+where $B=AS$ is a dense rectangular matrix of size $n\times s$ and $s\ll n$. This leads
+us to solve the system of normal equations 
+\begin{equation}
+B^TB\alpha=B^Tb,
+\label{sec03:eq06}
+\end{equation}
+which is associated with the least squares problem
+\begin{equation}
+\text{minimize}~\|b-B\alpha\|_2,
+\label{sec03:eq07}
+\end{equation}  
+where $B^T$ denotes the transpose of the matrix $B$. Since $B$ (i.e. $AS$) and
+$b$ are split among $L$ clusters, the symmetric positive definite system~(\ref{sec03:eq06})
+is solved in parallel. Thus, an iterative method would be more appropriate than
+a direct one for solving this system. We use the parallel conjugate gradient 
+method for the normal equations CGNR~\cite{S96,refCGNR}.
+
+%%% Ecrire l'algorithme(s)
+%%% Parler des synchronisations entre proc et clusters 
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
 
-This paper presents ....
+\bibliographystyle{plain}
+\bibliography{biblio}
 
 \end{document}