]> AND Private Git Repository - Krylov_multi.git/blobdiff - krylov_multi.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
v1
[Krylov_multi.git] / krylov_multi.tex
index 5715dc24479cbde273a2150e1acbb36ec339573f..2d0bc6994339e973f66571ac17f0008f0b7b822a 100644 (file)
@@ -75,11 +75,14 @@ traditional  multisplitting  method  that  suffer  from  slow  convergence,  as
 proposed  in~\cite{huang1993krylov},  the  use  of a  minimization  process  can
 drastically improve the convergence.
 
+The paper is organized as follows. First in Section~\ref{sec:02} is given some related works and the main principle of multisplitting methods. The, in Section~\ref{sec:03} is presented the algorithm of our Krylov multisplitting method based on inner-outer iterations. Finally, in Section~\ref{sec:04}, the parallel experiments on Hector architecture show the performances of the Krylov multisplitting algorithm compared to the classical GMRES algorithm to solve a 3D Poisson problem.
+
 
 %%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%
 
-\section{Related works and presention of the multisplitting method}
+\section{Related works and presentation of the multisplitting method}
+\label{sec:02}
 A general framework  for studying parallel multisplitting has  been presented in~\cite{o1985multi}
 by O'Leary and White. Convergence conditions are given for the
 most general case.  Many authors improved multisplitting algorithms by proposing
@@ -142,6 +145,7 @@ In the case where the diagonal weighting matrices $E_\ell$ have only zero and on
 %%%%%%%%%%%%%%%%%%%%%%%%
 
 \section{A two-stage method with a minimization}
+\label{sec:03}
 Let $Ax=b$ be a given large and sparse linear system of $n$ equations to solve in parallel on $L$ clusters of processors, physically adjacent or geographically distant, where $A\in\mathbb{R}^{n\times n}$ is a square and non-singular matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$ is the right-hand side vector. The multisplitting of this linear system is defined as follows
 \begin{equation}
 \left\{
@@ -253,6 +257,7 @@ The main key points of our Krylov multisplitting method to solve a large sparse
 %%%%%%%%%%%%%%%%%%%%%%%%
 
 \section{Experiments}
+\label{sec:04}
 In order to illustrate  the interest  of our algorithm. We have  compared our
 algorithm  with  the  GMRES  method  which  is a very  well  used  method  in  many
 situations.  We have chosen to focus on only one problem which is very simple to
@@ -276,9 +281,11 @@ preconditioner  it  is   possible  to  reduce  the  number   of  iterations  but
 preconditioners are not scalable when using many cores.
 
 %Doing many experiments  with many cores is  not easy and requires to  access to a supercomputer  with several  hours for  developing  a code  and then  improving it. 
-In the following we present  some experiments we could achieved out on the
-Hector architecture,  the previous UK's  high-end computing resource,  funded by
-the UK Research Councils, which has been stopped in the early 2014.
+In the following we present some experiments we could achieved out on the Hector
+architecture,  a UK's  high-end computing  resource, funded  by the  UK Research
+Councils~\cite{hector}.  This is  a Cray  XE6 supercomputer,  equipped  with two
+16-core AMD  Opteron 2.3 Ghz  and 32 GB  of memory. Machines  are interconnected
+with a 3D torus.
 
 Table~\ref{tab1} shows  the result of  the experiments.  The first  column shows
 the  size of  the  3D Poisson  problem.  The size  is chosen  in  order to  have
@@ -306,13 +313,13 @@ is reached. The precision and the maximum number of iterations of CGNR method ar
  \cline{3-8}
            &                   &  Time (s) & nb Iter. & $\Delta$  &   Time (s)& nb Iter. & $\Delta$ & \\
 \hline
-$468^3$ & 2048 (2x1024)        &  299.7    & 41,028    & 5.02e-8  &  48.4    & 691(6,146) & 8.24e-08  & 6.19   \\
+$468^3$ & 2,048 (2x1,024)        &  299.7    & 41,028    & 5.02e-8  &  48.4    & 691(6,146) & 8.24e-08  & 6.19   \\
 \hline
-$590^3$ & 4096 (2x2048)        &  433.1    & 55,494    & 4.92e-7  &  74.1    & 1,101(8,211) & 6.62e-08  & 5.84   \\
+$590^3$ & 4,096 (2x2,048)        &  433.1    & 55,494    & 4.92e-7  &  74.1    & 1,101(8,211) & 6.62e-08  & 5.84   \\
 \hline
-$743^3$ & 8192 (2x4096)        & 704.4     & 87,822    & 4.80e-07 &  151.2   & 3,061(14,914) & 5.87e-08 & 4.65    \\
+$743^3$ & 8,192 (2x4,096)        & 704.4     & 87,822    & 4.80e-07 &  151.2   & 3,061(14,914) & 5.87e-08 & 4.65    \\
 \hline
-$743^3$ & 8192 (4x2048)        & 704.4     & 87,822    & 4.80e-07 &  110.3   & 1,531(12,721) & 1.47e-07& 6.39  \\
+$743^3$ & 8,192 (4x2,048)        & 704.4     & 87,822    & 4.80e-07 &  110.3   & 1,531(12,721) & 1.47e-07& 6.39  \\
 \hline
 
 \end{tabular}
@@ -325,16 +332,47 @@ $743^3$ & 8192 (4x2048)        & 704.4     & 87,822    & 4.80e-07 &  110.3   & 1
 From these  experiments, it can be  observed that the  multisplitting version is
 always  faster   than  the  GMRES   version.   The  acceleration  gain   of  the
 multisplitting version is between 4 and 6.  It can be noticed that the number of
-iterations is drastically reduced with  the multisplitting version even it is not
-neglectable.
+iterations is drastically reduced with the multisplitting version even it is not
+neglectable. Moreover, with 8,192 cores, we  can see that using 4 clusters gives
+better performance than simply using 2 clusters. In fact, we can remark that the
+precision with 2 clusters is slightly  better but in both cases the precision is
+under the specified threshold.
 
 \section{Conclusion and perspectives}
-We have implemented a Krylov multisplitting method to solve sparse linear systems on large-scale computing platforms. We have developed a synchronous two-stage method based on the block Jacobi multisplitting and uses GMRES iterative method as an inner iteration. Our contribution in this paper is twofold. First we have constituted a virtual multi-cluster environment based on processors of the computing platform on which each linear sub-system issued from the splitting is solved in parallel by a cluster of processors. Second, we have implemented the outer iteration of the multisplitting method as a Krylov subspace method which minimizes some error function. This increases the convergence and improves the scalability of the multisplitting method.
-
-We have tested our multisplitting method to solve the sparse linear system issued from the discretization of a 3D Poisson problem. We have compared its performances to the classical GMRES method on a supercomputer composed of 2048 to 8192 cores. The experimental results showed that the multisplitting method is about 4 to 6 times faster than the GMRES method for different sizes of the problem split into 2 or 4 blocks when using multisplitting method. Indeed, the GMRES method has difficulties to scale with many cores while the Krylov multisplitting method allows to hide latency and reduce the inter-cluster communications.
-
-In future works, we plan to conduct experiments on larger number of cores and test the scalability of our Krylov multisplitting method. It would be interesting to validate its performances to solve other linear/nonlinear and symmetric/nonsymmetric problems. Moreover, we intend to develop multisplitting methods based on asynchronous iteration in which communications are overlapped by computations. These methods would be interesting for platforms composed of distant clusters interconnected by a high-latency network. In addition, we intend to investigate the convergence improvements of our method by using preconditioning techniques for Krylov iterative methods and multisplitting methods with overlapping blocks.    
-
+We  have implemented  a  Krylov  multisplitting method  to  solve sparse  linear
+systems  on large-scale computing  platforms.  We  have developed  a synchronous
+two-stage  method based  on the  block Jacobi  multisaplitting which  uses GMRES
+iterative  method as  an inner  iteration.  Our  contribution in  this  paper is
+twofold. First we provide a multi cluster decomposition that allows us to choose
+the  appropriate size  of  the clusters  according  to the  architecures of  the
+supercomputer.  Second,   we  have  implemented  the  outer   iteration  of  the
+multisplitting method  as a  Krylov subspace method  which minimizes  some error
+function.  This  increases the convergence  and improves the scalability  of the
+multisplitting method.
+
+We  have tested  our multisplitting  method to  solve the  sparse  linear system
+issued from  the discretization of  a 3D Poisson  problem. We have  compared its
+performances to the  classical GMRES method on a  supercomputer composed of 2,048
+to 8,192 cores. The experimental results showed that the multisplitting method is
+about 4  to 6  times faster  than the GMRES  method for  different sizes  of the
+problem split into  2 or 4 blocks when using  multisplitting method. Indeed, the
+GMRES  method  has  difficulties to  scale  with  many  cores while  the  Krylov
+multisplitting  method  allows to  hide  latency  and  reduce the  inter-cluster
+communications.
+
+In future  works, we plan to conduct  experiments on larger number  of cores and
+test  the  scalability  of  our   Krylov  multisplitting  method.  It  would  be
+interesting  to validate its  performances to  solve other  linear/nonlinear and
+symmetric/nonsymmetric problems.  Moreover, we intend  to develop multisplitting
+methods based  on asynchronous iteration in which  communications are overlapped
+by computations.  These methods would  be interesting for platforms  composed of
+distant  clusters interconnected  by  a high-latency  network.  In addition,  we
+intend  to investigate  the  convergence  improvements of  our  method by  using
+preconditioning  techniques  for  Krylov  iterative methods  and  multisplitting
+methods with overlapping blocks.
+
+\section{Acknowledgement}
+The authors would like to thank Mark Bull of the EPCC his fruitful remarks and the facilities of HECToR.
 
 %Other applications (=> other matrices)\\
 %Larger experiments\\