-$v_l^k$ is the solution of the local sub-system. A multisplitting
-method using an iterative method for solving the $L$ linear
-sub-systems is called an inner-outer iterative method or a two-stage
-method. The results $v_l^k$ obtained from the different
-splittings~(\ref{eq04}) are combined to compute the solution $x^k$ of
-the linear system by using the diagonal weighting matrices
+$v_l^k$ is the solution of the local sub-system. Thus, the
+calculations of $v_l^k$ may be performed in parallel by a set of
+processors. A multisplitting method using an iterative method for
+solving the $L$ linear sub-systems is called an inner-outer iterative
+method or a two-stage method. The results $v_l^k$ obtained from the
+different splittings~(\ref{eq04}) are combined to compute the solution
+$x^k$ of the linear system by using the diagonal weighting matrices