+In~\cite{prace-multi}, the authors have proposed a parallel multisplitting
+algorithm in which large block are solved using a GMRES solver. The authors have
+performed large scale experimentations upto 32.768 cores and they conclude that
+asynchronous multisplitting algorithm could more efficient than traditionnal
+solvers on exascale architecture with hunders of thousands of cores.
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\section{A two-stage method with a minimization}
+Let $Ax=b$ be a given sparse and large linear system of $n$ equations
+to solve in parallel on $L$ clusters, physically adjacent or geographically
+distant, where $A\in\mathbb{R}^{n\times n}$ is a square and nonsingular
+matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$
+is the right-hand side vector. The multisplitting of this linear system
+is defined as follows:
+\begin{equation}
+\left\{
+\begin{array}{lll}
+A & = & [A_{1}, \ldots, A_{L}]\\
+x & = & [X_{1}, \ldots, X_{L}]\\
+b & = & [B_{1}, \ldots, B_{L}]
+\end{array}
+\right.
+\label{sec03:eq01}
+\end{equation}
+where for all $l\in\{1,\ldots,L\}$ $A_l$ is a rectangular block of size $n_l\times n$
+and $X_l$ and $B_l$ are sub-vectors of size $n_l$, such that $\sum_ln_l=n$. In this
+case, we use a row-by-row splitting without overlapping in such a way that successive
+rows of the sparse matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster.
+So, the multisplitting format of the linear system is defined as follows:
+\begin{equation}
+\forall l\in\{1,\ldots,L\} \mbox{,~} \displaystyle\sum_{i=1}^{l-1}A_{li}X_i + A_{ll}X_l + \displaystyle\sum_{i=l+1}^{L}A_{li}X_i = B_l,
+\label{sec03:eq02}
+\end{equation}
+where $A_{li}$ is a block of size $n_l\times n_i$ of the rectangular matrix $A_l$, $X_i\neq X_l$
+is a sub-vector of size $n_i$ of the solution vector $x$ and $\sum_{i<l}n_i+\sum_{i>l}n_i+n_l=n$,
+for all $i\in\{1,\ldots,l-1,l+1,\ldots,L\}$.
+
+The multisplitting method proceeds by iteration for solving the linear system in such a
+way each sub-system
+\begin{equation}
+\left\{
+\begin{array}{l}
+A_{ll}X_l = Y_l \mbox{,~such that}\\
+Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i,
+\end{array}
+\right.
+\label{sec03:eq03}
+\end{equation}
+is solved independently by a cluster of processors and communication are required to
+update the right-hand side vectors $Y_l$, such that the vectors $X_i$ represent the data
+dependencies between the clusters. In this case, the parallel GMRES method is used
+as an inner iteration method for solving the linear sub-systems~(\ref{sec03:eq03}).
+
+
+
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+