]> AND Private Git Repository - Krylov_multi.git/blobdiff - krylov_multi.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
07-01-2014 V1
[Krylov_multi.git] / krylov_multi.tex
index 0fd3b7919cddd12d22e8c9750d7b800db22081e0..e61890d318e3fd40e2237f2ff4cc310399fefaa4 100644 (file)
 \maketitle
 
 
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+
 \begin{abstract}
 In  this  paper we  revist  the  krylov  multisplitting algorithm  presented  in
 \cite{huang1993krylov}  which  uses  a  scalar  method to  minimize  the  krylov
@@ -25,6 +29,11 @@ problem  are presented.   They  show  the obtained  improvements  compared to  a
 classical GMRES both in terms of number of iterations and execution times.
 \end{abstract}
 
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+
 \section{Introduction}
 
 Iterative methods are used to solve  large sparse linear systems of equations of
@@ -39,7 +48,59 @@ thousands of cores are used.
 
 
 A completer...
-On ne peut pas parler de tout...
+On ne peut pas parler de tout...\\
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%
+%% BEGIN
+%%%%%%%%%%%%%%%%%%%%%%%
+The key idea  of the multisplitting method for  solving a large system
+of linear equations $Ax=b$ consists  in partitioning the matrix $A$ in
+$L$ several ways
+\begin{equation}
+A = M_l - N_l,~l\in\{1,\ldots,L\},
+\label{eq01}
+\end{equation}
+where $M_l$ are nonsingular matrices. Then the linear system is solved
+by iteration based on the multisplittings as follows
+\begin{equation}
+x^{k+1}=\displaystyle\sum^L_{l=1} E_l M^{-1}_l (N_l x^k + b),~k=1,2,3,\ldots
+\label{eq02}
+\end{equation}
+where $E_l$ are non-negative and diagonal weighting matrices such that
+$\sum^L_{l=1}E_l=I$ ($I$ is an identity matrix).  Thus the convergence
+of such a method is dependent on the condition
+\begin{equation}
+\rho(\displaystyle\sum^L_{l=1}E_l M^{-1}_l N_l)<1.
+\label{eq03}
+\end{equation}
+
+The advantage of  the multisplitting method is that  at each iteration
+$k$ there are $L$ different linear sub-systems
+\begin{equation}
+y_l^k=M^{-1}_l N_l x_l^{k-1} + M^{-1}_l b,~l\in\{1,\ldots,L\},
+\label{eq04}
+\end{equation}
+to be solved  independently by a direct or  an iterative method, where
+$y_l^k$  is the solution  of the  local sub-system.   A multisplitting
+method  using   an  iterative  method  for  solving   the  $L$  linear
+sub-systems is  called an inner-outer iterative method  or a two-stage
+method.   The   results    $y_l^k$   obtained   from   the   different
+splittings~(\ref{eq04}) are combined to  compute the solution $x^k$ of
+the linear system by using the diagonal weighting matrices
+\begin{equation}
+x^k = \displaystyle\sum^L_{l=1} E_l y_l^k,
+\label{eq05}
+\end{equation}    
+In the case where the diagonal weighting matrices $E_l$ have only zero
+and   one   factors  (i.e.   $y_l^k$   are   disjoint  vectors),   the
+multisplitting method is non-overlapping  and corresponds to the block
+Jacobi method.
+%%%%%%%%%%%%%%%%%%%%%%%
+%% END
+%%%%%%%%%%%%%%%%%%%%%%%
 
 \section{Related works}
 
@@ -66,6 +127,59 @@ of multisplitting algorithms that take benefit from multisplitting algorithms to
 solve large scale linear systems. Inner  solvers could be based on scalar direct
 method with the LU method or scalar iterative one with GMRES.
 
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\section{A two-stage method with a minimization}
+Let $Ax=b$ be a given sparse and large linear system of $n$ equations
+to solve in parallel on $L$ clusters, physically adjacent or geographically
+distant, where $A\in\mathbb{R}^{n\times n}$ is a square and nonsingular
+matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$
+is the right-hand side vector. The multisplitting of this linear system 
+is defined as follows:
+\begin{equation}
+\left\{
+\begin{array}{lll}
+A & = & [A_{1}, \ldots, A_{L}]\\
+x & = & [X_{1}, \ldots, X_{L}]\\
+b & = & [B_{1}, \ldots, B_{L}]
+\end{array}
+\right.
+\label{sec03:eq01}
+\end{equation}  
+where for all $l\in\{1,\ldots,L\}$ $A_l$ is a rectangular block of size $n_l\times n$
+and $X_l$ and $B_l$ are sub-vectors of size $n_l$, such that $\sum_ln_l=n$. In this
+case, we use a row-by-row splitting without overlapping in such a way that successive
+rows of the sparse matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster.
+So, the multisplitting format of the linear system is defined as follows:
+\begin{equation}
+\forall l\in\{1,\ldots,L\} \mbox{,~} \displaystyle\sum_{i=1}^{l-1}A_{li}X_i + A_{ll}X_l + \displaystyle\sum_{i=l+1}^{L}A_{li}X_i = B_l, 
+\label{sec03:eq02}
+\end{equation} 
+where $A_{li}$ is a block of size $n_l\times n_i$ of the rectangular matrix $A_l$, $X_i\neq X_l$
+is a sub-vector of size $n_i$ of the solution vector $x$ and $\sum_{i<l}n_i+\sum_{i>l}n_i+n_l=n$,
+for all $i\in\{1,\ldots,l-1,l+1,\ldots,L\}$. Therefore, each cluster $l$ is in charge of solving
+the following spare sub-linear system: 
+\begin{equation}
+\left\{
+\begin{array}{l}
+A_{ll}X_l = Y_l \mbox{,~such that}\\
+Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i,
+\end{array}
+\right.
+\label{sec03:eq03}
+\end{equation}
+where the sub-vectors $X_i$ define the data dependencies between the cluster $l$ and other clusters.
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+
 \bibliographystyle{plain}
 \bibliography{biblio}