]> AND Private Git Repository - Krylov_multi.git/blobdiff - krylov_multi.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
11-02-2014
[Krylov_multi.git] / krylov_multi.tex
index 1b8b43e88a023a93d971a4113ee38a6d75c81452..8685bd2ba2a697e8fde439799ad04641938bc963 100644 (file)
@@ -3,6 +3,15 @@
 \usepackage{amsfonts,amssymb}
 \usepackage{amsmath}
 \usepackage{graphicx}
+\usepackage{algorithm}
+\usepackage{algpseudocode}
+
+\algnewcommand\algorithmicinput{\textbf{Input:}}
+\algnewcommand\Input{\item[\algorithmicinput]}
+
+\algnewcommand\algorithmicoutput{\textbf{Output:}}
+\algnewcommand\Output{\item[\algorithmicoutput]}
+
 
 \title{A scalable multisplitting algorithm for solving large sparse linear systems} 
 
@@ -52,8 +61,13 @@ solvers.   However, most  of the  good preconditionners  are not  sclalable when
 thousands of cores are used.
 
 
-A completer...
-On ne peut pas parler de tout...\\
+Traditionnal iterative  solvers have  global synchronizations that  penalize the
+scalability.   Two  possible solutions  consists  either  in using  asynchronous
+iterative  methods~\cite{ref18} or  to  use multisplitting  algorithms. In  this
+paper, we will  reconsider the use of a multisplitting  method. In opposition to
+traditionnal  multisplitting  method  that  suffer  from  slow  convergence,  as
+proposed  in~\cite{huang1993krylov},  the  use  of a  minimization  process  can
+drastically improve the convergence.
 
 
 
@@ -191,10 +205,11 @@ Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i,
 is solved  independently by a cluster of  processors and communication
 are required  to update the  right-hand side vectors $Y_l$,  such that
 the  vectors  $X_i$  represent   the  data  dependencies  between  the
-clusters. In this work, we use  the GMRES method as an inner iteration
-method  for  solving   the  sub-systems~(\ref{sec03:eq03}).  It  is  a
-well-known iterative method which  gives good performances for solving
-sparse linear systems in parallel on a cluster of processors.
+clusters. In this work,  we use the parallel GMRES method~\cite{ref34}
+as     an     inner      iteration     method     to     solve     the
+sub-systems~(\ref{sec03:eq03}).  It  is a well-known  iterative method
+which  gives good performances  for solving  sparse linear  systems in
+parallel on a cluster of processors.
 
 It should be noted that  the convergence of the inner iterative solver
 for  the  different  linear  sub-systems~(\ref{sec03:eq03})  does  not
@@ -218,39 +233,98 @@ splittings~(\ref{sec03:eq03})
 S=\{x^1,x^2,\ldots,x^s\},~s\leq n,
 \label{sec03:eq04}
 \end{equation}
-where   for  $k\in\{1,\ldots,s\}$,  $x^k=[X_1^k,\ldots,X_L^k]$   is  a
-solution of the  global linear system.%The advantage such a method is that the Krylov subspace does not need to be spanned by an orthogonal basis.
-The advantage  of such a  Krylov subspace is  that we need  neither an
-orthogonal basis  nor synchronizations between  the different clusters
-to generate this basis.
-
-The multisplitting method is periodically restarted every $s$ iterations
-with a new initial guess $\tilde{x}=S\alpha$ which minimizes the error
-function $\|b-Ax\|_2$ over the Krylov subspace spanned by the vectors of $S$.
-So, $\alpha$ is defined as the solution of the large overdetermined linear system
+where   for  $j\in\{1,\ldots,s\}$,  $x^j=[X_1^j,\ldots,X_L^j]$   is  a
+solution of the  global linear system. The advantage  of such a Krylov
+subspace   is  that   we  need   neither  an   orthogonal   basis  nor
+synchronizations  between  the  different  clusters to  generate  this
+basis.
+
+The  multisplitting   method  is  periodically   restarted  every  $s$
+iterations  with   a  new  initial   guess  $\tilde{x}=S\alpha$  which
+minimizes  the error  function $\|b-Ax\|_2$  over the  Krylov subspace
+spanned  by  the vectors  of  $S$.  So,  $\alpha$  is  defined as  the
+solution of the large overdetermined linear system
 \begin{equation}
-B\alpha=b,
+R\alpha=b,
 \label{sec03:eq05}
 \end{equation}
-where $B=AS$ is a dense rectangular matrix of size $n\times s$ and $s\ll n$. This leads
-us to solve the system of normal equations 
+where $R=AS$  is a  dense rectangular matrix  of size $n\times  s$ and
+$s\ll n$. This leads us to solve the system of normal equations
 \begin{equation}
-B^TB\alpha=B^Tb,
+R^TR\alpha=R^Tb,
 \label{sec03:eq06}
 \end{equation}
 which is associated with the least squares problem
 \begin{equation}
-\text{minimize}~\|b-B\alpha\|_2,
+\text{minimize}~\|b-R\alpha\|_2,
 \label{sec03:eq07}
 \end{equation}  
-where $B^T$ denotes the transpose of the matrix $B$. Since $B$ (i.e. $AS$) and
-$b$ are split among $L$ clusters, the symmetric positive definite system~(\ref{sec03:eq06})
-is solved in parallel. Thus, an iterative method would be more appropriate than
-a direct one for solving this system. We use the parallel conjugate gradient 
-method for the normal equations CGNR~\cite{S96,refCGNR}.
-
-%%% Ecrire l'algorithme(s)
-%%% Parler des synchronisations entre proc et clusters 
+where $R^T$ denotes the transpose  of the matrix $R$.  Since $R$ (i.e.
+$AS$) and  $b$ are  split among $L$  clusters, the  symmetric positive
+definite  system~(\ref{sec03:eq06}) is  solved in  parallel.  Thus, an
+iterative method would be more  appropriate than a direct one to solve
+this system.  We use  the parallel conjugate  gradient method  for the
+normal equations CGNR~\cite{S96,refCGNR}.
+
+\begin{algorithm}[!t]
+\caption{A two-stage linear solver with inner iteration GMRES method}
+\begin{algorithmic}[1]
+\Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess)
+\Output $X_l$ (local solution vector)\vspace{0.2cm}
+\State Load $A_l$, $B_l$, $x^0$
+\State Initialize the minimizer $\tilde{x}^0=x^0$
+\For {$k=1,2,3,\ldots$ until the global convergence}
+\State Restart with $x^0=\tilde{x}^{k-1}$: \textbf{for} $j=1,2,\ldots,s$ \textbf{do}
+\State\hspace{0.5cm} Inner iteration solver: \Call{InnerSolver}{$x^0$, $j$}
+\State\hspace{0.5cm} Construct the basis $S$: add the column vector $X_l^j$ to the matrix $S_l^k$
+\State\hspace{0.5cm} Exchange the local solution vector $X_l^j$ with the neighboring clusters
+\State\hspace{0.5cm} Compute the dense matrix $R$: $R_l^{k,j}=\sum^L_{i=1}A_{li}X_i^j$ 
+\State\textbf{end for} 
+\State Minimization $\|b-R\alpha\|_2$: \Call{UpdateMinimizer}{$S_l$, $R$, $b$, $k$}
+\State Local solution of the linear system $Ax=b$: $X_l^k=\tilde{X}_l^k$
+\State Exchange the local minimizer $\tilde{X}_l^k$ with the neighboring clusters
+\EndFor
+
+\Statex
+
+\Function {InnerSolver}{$x^0$, $j$}
+\State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$
+\State Solving the local splitting $A_{ll}X_l^j=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the initial guess
+\State \Return $X_l^j$
+\EndFunction
+
+\Statex
+
+\Function {UpdateMinimizer}{$S_l$, $R$, $b$, $k$}
+\State Solving the normal equations $(R^k)^TR^k\alpha^k=(R^k)^Tb$ in parallel by $L$ clusters using the parallel CGNR method
+\State Compute the local minimizer: $\tilde{X}_l^k=S_l^k\alpha^k$
+\State \Return $\tilde{X}_l^k$
+\EndFunction
+\end{algorithmic}
+\label{algo:01}
+\end{algorithm}
+
+The  main key points  of the  multisplitting method  to solve  a large
+sparse  linear  system  are  given in  Algorithm~\ref{algo:01}.   This
+algorithm is based on a two-stage method with a minimization using the
+GMRES iterative method as an  inner solver. It is executed in parallel
+by  each cluster  of processors.   The matrices  and vectors  with the
+subscript  $l$ represent  the local  data for  the cluster  $l$, where
+$l\in\{1,\ldots,L\}$. The two-stage solver uses two different parallel
+iterative algorithms:  the GMRES method  to solve each splitting  on a
+cluster of processors, and the CGNR method executed in parallel by all
+clusters  to minimize  the  function error  over  the Krylov  subspace
+spanned by  $S$.  The  algorithm requires two  global synchronizations
+between the $L$  clusters. The first one is  performed at line~$12$ in
+Algorithm~\ref{algo:01}  to exchange  the local  values of  the vector
+solution $x$ (i.e. the  minimizer $\tilde{x}$) required to restart the
+multisplitting  solver. The  second  one is  needed  to construct  the
+matrix $R$ of  the Krylov subspace.  We choose  to perform this latter
+synchronization $s$  times in every  outer iteration $k$  (line~$7$ in
+Algorithm~\ref{algo:01}). This is a straightforward way to compute the
+matrix-matrix    multiplication     $R=AS$.     We    implement    all
+synchronizations   by   using   the   MPI   collective   communication
+subroutines.