]> AND Private Git Repository - Krylov_multi.git/blobdiff - krylov_multi.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[Krylov_multi.git] / krylov_multi.tex
index d81125b19fbbc0e1c4edccb70eb1e669d90ed6f1..dca87e4b28d49a3ac2c44eb530e6ffd38bf8edb8 100644 (file)
@@ -3,8 +3,22 @@
 \usepackage{amsfonts,amssymb}
 \usepackage{amsmath}
 \usepackage{graphicx}
 \usepackage{amsfonts,amssymb}
 \usepackage{amsmath}
 \usepackage{graphicx}
+\usepackage{algorithm}
+\usepackage{algpseudocode}
+\usepackage{multirow}
+
+\algnewcommand\algorithmicinput{\textbf{Input:}}
+\algnewcommand\Input{\item[\algorithmicinput]}
+
+\algnewcommand\algorithmicoutput{\textbf{Output:}}
+\algnewcommand\Output{\item[\algorithmicoutput]}
+
+\newcommand{\Time}[1]{\mathit{Time}_\mathit{#1}}
+\newcommand{\Prec}{\mathit{prec}}
+\newcommand{\Ratio}{\mathit{Ratio}}
 
 \title{A scalable multisplitting algorithm for solving large sparse linear systems} 
 
 \title{A scalable multisplitting algorithm for solving large sparse linear systems} 
+\date{}
 
 
 
 
 
 
@@ -19,7 +33,7 @@
 
 
 \begin{abstract}
 
 
 \begin{abstract}
-In  this  paper we  revist  the  krylov  multisplitting algorithm  presented  in
+In  this paper  we  revisit  the krylov  multisplitting  algorithm presented  in
 \cite{huang1993krylov}  which  uses  a  scalar  method to  minimize  the  krylov
 iterations computed by a multisplitting algorithm. Our new algorithm is based on
 a  parallel multisplitting  algorithm  with few  blocks  of large  size using  a
 \cite{huang1993krylov}  which  uses  a  scalar  method to  minimize  the  krylov
 iterations computed by a multisplitting algorithm. Our new algorithm is based on
 a  parallel multisplitting  algorithm  with few  blocks  of large  size using  a
@@ -38,17 +52,27 @@ classical GMRES both in terms of number of iterations and execution times.
 
 Iterative methods are used to solve  large sparse linear systems of equations of
 the form  $Ax=b$ because they are  easier to parallelize than  direct ones. Many
 
 Iterative methods are used to solve  large sparse linear systems of equations of
 the form  $Ax=b$ because they are  easier to parallelize than  direct ones. Many
-iterative  methods have  been proposed  and  adapted by  many researchers.  When
-solving large  linear systems  with many cores,  iterative methods  often suffer
-from  scalability  problems.    This  is  due  to  their   need  for  collective
+iterative  methods have  been proposed  and  adapted by  many researchers.   For
+example, the GMRES method and the  Conjugate Gradient method are very well known
+and  used by  many researchers  ~\cite{S96}. Both  the method  are based  on the
+Krylov subspace which consists in forming  a basis of the sequence of successive
+matrix powers times the initial residual.
+
+When  solving large  linear systems  with  many cores,  iterative methods  often
+suffer  from scalability problems.   This is  due to  their need  for collective
 communications  to  perform  matrix-vector  products and  reduction  operations.
 Preconditionners can be  used in order to increase  the convergence of iterative
 solvers.   However, most  of the  good preconditionners  are not  sclalable when
 thousands of cores are used.
 
 
 communications  to  perform  matrix-vector  products and  reduction  operations.
 Preconditionners can be  used in order to increase  the convergence of iterative
 solvers.   However, most  of the  good preconditionners  are not  sclalable when
 thousands of cores are used.
 
 
-A completer...
-On ne peut pas parler de tout...\\
+Traditionnal iterative  solvers have  global synchronizations that  penalize the
+scalability.   Two  possible solutions  consists  either  in using  asynchronous
+iterative  methods~\cite{ref18} or  to  use multisplitting  algorithms. In  this
+paper, we will  reconsider the use of a multisplitting  method. In opposition to
+traditionnal  multisplitting  method  that  suffer  from  slow  convergence,  as
+proposed  in~\cite{huang1993krylov},  the  use  of a  minimization  process  can
+drastically improve the convergence.
 
 
 
 
 
 
@@ -56,40 +80,49 @@ On ne peut pas parler de tout...\\
 %%%%%%%%%%%%%%%%%%%%%%%
 %% BEGIN
 %%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%
 %% BEGIN
 %%%%%%%%%%%%%%%%%%%%%%%
-The key idea of the multisplitting method for solving a large system of linear equations
-$Ax=b$ consists in partitioning the matrix $A$ in $L$ several ways 
+The key idea  of the multisplitting method for  solving a large system
+of linear equations $Ax=b$ consists  in partitioning the matrix $A$ in
+$L$ several ways
 \begin{equation}
 A = M_l - N_l,~l\in\{1,\ldots,L\},
 \label{eq01}
 \end{equation}
 \begin{equation}
 A = M_l - N_l,~l\in\{1,\ldots,L\},
 \label{eq01}
 \end{equation}
-where $M_l$ is a nonsingular matrix, and then solving the linear system by the iterative method
+where $M_l$ are nonsingular matrices. Then the linear system is solved
+by iteration based on the multisplittings as follows
 \begin{equation}
 x^{k+1}=\displaystyle\sum^L_{l=1} E_l M^{-1}_l (N_l x^k + b),~k=1,2,3,\ldots
 \label{eq02}
 \end{equation}
 \begin{equation}
 x^{k+1}=\displaystyle\sum^L_{l=1} E_l M^{-1}_l (N_l x^k + b),~k=1,2,3,\ldots
 \label{eq02}
 \end{equation}
-where $E_l$ is a non-negative and diagonal weighting matrix such that $\sum^L_{l=1}E_l=I$ ($I$ is the identity matrix).
-Thus the convergence of such a method is dependent on the condition
+where $E_l$ are non-negative and diagonal weighting matrices such that
+$\sum^L_{l=1}E_l=I$ ($I$ is an identity matrix).  Thus the convergence
+of such a method is dependent on the condition
 \begin{equation}
 \rho(\displaystyle\sum^L_{l=1}E_l M^{-1}_l N_l)<1.
 \label{eq03}
 \end{equation}
 
 \begin{equation}
 \rho(\displaystyle\sum^L_{l=1}E_l M^{-1}_l N_l)<1.
 \label{eq03}
 \end{equation}
 
-The advantage of the multisplitting method is that at each iteration $k$ there are $L$ different linear
-systems
+The advantage of  the multisplitting method is that  at each iteration
+$k$ there are $L$ different linear sub-systems
 \begin{equation}
 \begin{equation}
-y_l=M^{-1}_l N_l x_l^{k-1} + M^{-1}_l b,~l\in\{1,\ldots,L\},
+v_l^k=M^{-1}_l N_l x_l^{k-1} + M^{-1}_l b,~l\in\{1,\ldots,L\},
 \label{eq04}
 \end{equation}
 \label{eq04}
 \end{equation}
-to be solved independently by a direct or an iterative method, where $y_l$ is the solution of the local system.
-A multisplitting method using an iterative method for solving the $L$ linear systems is called an inner-outer
-iterative method or a two-stage method. The solution of the global linear system at the iteration $k$ is computed
-as follows
+to be solved  independently by a direct or  an iterative method, where
+$v_l^k$  is   the  solution  of   the  local  sub-system.   Thus,  the
+calculations  of $v_l^k$  may be  performed in  parallel by  a  set of
+processors.   A multisplitting  method using  an iterative  method for
+solving the $L$ linear  sub-systems is called an inner-outer iterative
+method or a  two-stage method.  The results $v_l^k$  obtained from the
+different splittings~(\ref{eq04}) are combined to compute the solution
+$x^k$ of the linear system by using the diagonal weighting matrices
 \begin{equation}
 \begin{equation}
-x^k = \displaystyle\sum^L_{l=1} E_l y_l,
+x^k = \displaystyle\sum^L_{l=1} E_l v_l^k,
 \label{eq05}
 \end{equation}    
 \label{eq05}
 \end{equation}    
-In the case where the diagonal weighting matrices $E_l$ have only zero and one factors (i.e. $y_l$ are disjoint vectors),
-the multisplitting method is non-overlapping and corresponds to the block Jacobi method.  
+In the case where the diagonal weighting matrices $E_l$ have only zero
+and   one   factors  (i.e.   $v_l^k$   are   disjoint  vectors),   the
+multisplitting method is non-overlapping  and corresponds to the block
+Jacobi method.
 %%%%%%%%%%%%%%%%%%%%%%%
 %% END
 %%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%
 %% END
 %%%%%%%%%%%%%%%%%%%%%%%
@@ -100,15 +133,15 @@ the multisplitting method is non-overlapping and corresponds to the block Jacobi
 A general framework  for studying parallel multisplitting has  been presented in
 \cite{o1985multi} by O'Leary and White. Convergence conditions are given for the
 most general case.  Many authors improved multisplitting algorithms by proposing
 A general framework  for studying parallel multisplitting has  been presented in
 \cite{o1985multi} by O'Leary and White. Convergence conditions are given for the
 most general case.  Many authors improved multisplitting algorithms by proposing
-for  example  a  asynchronous  version  \cite{bru1995parallel}  and  convergence
-condition  \cite{bai1999block,bahi2000asynchronous}   in  this  case   or  other
-two-stage algorithms~\cite{frommer1992h,bru1995parallel}
+for  example  an  asynchronous  version  \cite{bru1995parallel}  and  convergence
+conditions  \cite{bai1999block,bahi2000asynchronous}   in  this  case   or  other
+two-stage algorithms~\cite{frommer1992h,bru1995parallel}.
 
 In  \cite{huang1993krylov},  the  authors  proposed  a  parallel  multisplitting
 algorithm in which all the tasks except  one are devoted to solve a sub-block of
 the splitting  and to send their  local solution to  the first task which  is in
 charge to  combine the vectors at  each iteration.  These vectors  form a Krylov
 
 In  \cite{huang1993krylov},  the  authors  proposed  a  parallel  multisplitting
 algorithm in which all the tasks except  one are devoted to solve a sub-block of
 the splitting  and to send their  local solution to  the first task which  is in
 charge to  combine the vectors at  each iteration.  These vectors  form a Krylov
-basis for  which the first tasks minimize  the error function over  the basis to
+basis for  which the first task minimizes  the error function over  the basis to
 increase the convergence, then the other tasks receive the update solution until
 convergence of the global system. 
 
 increase the convergence, then the other tasks receive the update solution until
 convergence of the global system. 
 
@@ -119,7 +152,11 @@ of multisplitting algorithms that take benefit from multisplitting algorithms to
 solve large scale linear systems. Inner  solvers could be based on scalar direct
 method with the LU method or scalar iterative one with GMRES.
 
 solve large scale linear systems. Inner  solvers could be based on scalar direct
 method with the LU method or scalar iterative one with GMRES.
 
-
+In~\cite{prace-multi},  the  authors  have  proposed a  parallel  multisplitting
+algorithm in which large block are solved using a GMRES solver. The authors have
+performed large scale experimentations upto  32.768 cores and they conclude that
+asynchronous  multisplitting algorithm  could more  efficient  than traditionnal
+solvers on exascale architecture with hunders of thousands of cores.
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%
@@ -127,12 +164,12 @@ method with the LU method or scalar iterative one with GMRES.
 
 
 \section{A two-stage method with a minimization}
 
 
 \section{A two-stage method with a minimization}
-Let $Ax=b$ be a given sparse and large linear system of $n$ equations
-to solve in parallel on $L$ clusters, physically adjacent or geographically
-distant, where $A\in\mathbb{R}^{n\times n}$ is a square and nonsingular
-matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$
-is the right-hand side vector. The multisplitting of this linear system 
-is defined as follows:
+Let $Ax=b$ be a given sparse  and large linear system of $n$ equations
+to  solve  in  parallel   on  $L$  clusters,  physically  adjacent  or
+geographically distant, where $A\in\mathbb{R}^{n\times n}$ is a square
+and  nonsingular matrix, $x\in\mathbb{R}^{n}$  is the  solution vector
+and   $b\in\mathbb{R}^{n}$  is   the  right-hand   side   vector.  The
+multisplitting of this linear system is defined as follows:
 \begin{equation}
 \left\{
 \begin{array}{lll}
 \begin{equation}
 \left\{
 \begin{array}{lll}
@@ -143,19 +180,24 @@ b & = & [B_{1}, \ldots, B_{L}]
 \right.
 \label{sec03:eq01}
 \end{equation}  
 \right.
 \label{sec03:eq01}
 \end{equation}  
-where for all $l\in\{1,\ldots,L\}$ $A_l$ is a rectangular block of size $n_l\times n$
-and $X_l$ and $B_l$ are sub-vectors of size $n_l$, such that $\sum_ln_l=n$. In this
-case, we use a row-by-row splitting without overlapping in such a way that successive
-rows of the sparse matrix $A$ and both vectors $x$ and $b$ are assigned to a cluster.
-So, the multisplitting format of the linear system is defined as follows:
+where for  $l\in\{1,\ldots,L\}$, $A_l$ is a rectangular  block of size
+$n_l\times n$ and $X_l$ and  $B_l$ are sub-vectors of size $n_l$, such
+that  $\sum_ln_l=n$.  In this  case,  we  use  a row-by-row  splitting
+without overlapping in  such a way that successive  rows of the sparse
+matrix $A$ and  both vectors $x$ and $b$ are  assigned to one cluster.
+So,  the multisplitting  format of  the  linear system  is defined  as
+follows:
 \begin{equation}
 \forall l\in\{1,\ldots,L\} \mbox{,~} \displaystyle\sum_{i=1}^{l-1}A_{li}X_i + A_{ll}X_l + \displaystyle\sum_{i=l+1}^{L}A_{li}X_i = B_l, 
 \label{sec03:eq02}
 \end{equation} 
 \begin{equation}
 \forall l\in\{1,\ldots,L\} \mbox{,~} \displaystyle\sum_{i=1}^{l-1}A_{li}X_i + A_{ll}X_l + \displaystyle\sum_{i=l+1}^{L}A_{li}X_i = B_l, 
 \label{sec03:eq02}
 \end{equation} 
-where $A_{li}$ is a block of size $n_l\times n_i$ of the rectangular matrix $A_l$, $X_i\neq X_l$
-is a sub-vector of size $n_i$ of the solution vector $x$ and $\sum_{i<l}n_i+\sum_{i>l}n_i+n_l=n$,
-for all $i\in\{1,\ldots,l-1,l+1,\ldots,L\}$. Therefore, each cluster $l$ is in charge of solving
-the following spare sub-linear system: 
+where $A_{li}$ is  a block of size $n_l\times  n_i$ of the rectangular
+matrix  $A_l$, $X_i\neq  X_l$ is  a sub-vector  of size  $n_i$  of the
+solution vector  $x$ and $\sum_{i<l}n_i+\sum_{i>l}n_i+n_l=n$,  for all
+$i\in\{1,\ldots,l-1,l+1,\ldots,L\}$.
+
+The multisplitting method proceeds by iteration for solving the linear
+system in such a way each sub-system
 \begin{equation}
 \left\{
 \begin{array}{l}
 \begin{equation}
 \left\{
 \begin{array}{l}
@@ -165,8 +207,226 @@ Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i,
 \right.
 \label{sec03:eq03}
 \end{equation}
 \right.
 \label{sec03:eq03}
 \end{equation}
-where the sub-vectors $X_i$ define the data dependencies between the cluster $l$ and other clusters.
+is solved  independently by a cluster of  processors and communication
+are required  to update the  right-hand side vectors $Y_l$,  such that
+the  vectors  $X_i$  represent   the  data  dependencies  between  the
+clusters. In this work,  we use the parallel GMRES method~\cite{ref34}
+as     an     inner      iteration     method     to     solve     the
+sub-systems~(\ref{sec03:eq03}).  It  is a well-known  iterative method
+which  gives good performances  to solve  sparse linear  systems in
+parallel on a cluster of processors.
+
+It should be noted that  the convergence of the inner iterative solver
+for  the  different  linear  sub-systems~(\ref{sec03:eq03})  does  not
+necessarily involve  the convergence of the  multisplitting method. It
+strongly depends on  the properties of the sparse  linear system to be
+solved                 and                the                computing
+environment~\cite{o1985multi,ref18}.  Furthermore,  the multisplitting
+of the  linear system among  several clusters of  processors increases
+the  spectral radius  of  the iteration  matrix,  thereby slowing  the
+convergence.  In   this  paper,  we   based  on  the   work  presented
+in~\cite{huang1993krylov} to increase  the convergence and improve the
+scalability of the multisplitting methods.
+
+In  order  to  accelerate  the  convergence, we  implement  the  outer
+iteration  of the multisplitting  solver as  a Krylov  subspace method
+which minimizes some error function over a Krylov subspace~\cite{S96}.
+The Krylov  space of  the method that  we used  is spanned by  a basis
+composed  of   successive  solutions  issued  from   solving  the  $L$
+splittings~(\ref{sec03:eq03})
+\begin{equation}
+S=\{x^1,x^2,\ldots,x^s\},~s\leq n,
+\label{sec03:eq04}
+\end{equation}
+where   for  $j\in\{1,\ldots,s\}$,  $x^j=[X_1^j,\ldots,X_L^j]$   is  a
+solution of the  global linear system. The advantage  of such a Krylov
+subspace   is  that   we  need   neither  an   orthogonal   basis  nor
+synchronizations  between  the  different  clusters to  generate  this
+basis.
+
+The  multisplitting   method  is  periodically   restarted  every  $s$
+iterations  with   a  new  initial   guess  $\tilde{x}=S\alpha$  which
+minimizes  the error  function $\|b-Ax\|_2$  over the  Krylov subspace
+spanned  by  the vectors  of  $S$.  So,  $\alpha$  is  defined as  the
+solution of the large overdetermined linear system
+\begin{equation}
+R\alpha=b,
+\label{sec03:eq05}
+\end{equation}
+where $R=AS$  is a  dense rectangular matrix  of size $n\times  s$ and
+$s\ll n$. This leads us to solve the system of normal equations
+\begin{equation}
+R^TR\alpha=R^Tb,
+\label{sec03:eq06}
+\end{equation}
+which is associated with the least squares problem
+\begin{equation}
+\text{minimize}~\|b-R\alpha\|_2,
+\label{sec03:eq07}
+\end{equation}  
+where $R^T$ denotes the transpose  of the matrix $R$.  Since $R$ (i.e.
+$AS$) and  $b$ are  split among $L$  clusters, the  symmetric positive
+definite  system~(\ref{sec03:eq06}) is  solved in  parallel.  Thus, an
+iterative method would be more  appropriate than a direct one to solve
+this system.  We use  the parallel conjugate  gradient method  for the
+normal equations CGNR~\cite{S96,refCGNR}.
+
+\begin{algorithm}[!t]
+\caption{A two-stage linear solver with inner iteration GMRES method}
+\begin{algorithmic}[1]
+\Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess)
+\Output $X_l$ (local solution vector)\vspace{0.2cm}
+\State Load $A_l$, $B_l$, $x^0$
+\State Initialize the minimizer $\tilde{x}^0=x^0$
+\For {$k=1,2,3,\ldots$ until the global convergence}
+\State Restart with $x^0=\tilde{x}^{k-1}$: \textbf{for} $j=1,2,\ldots,s$ \textbf{do}
+\State\hspace{0.5cm} Inner iteration solver: \Call{InnerSolver}{$x^0$, $j$}
+\State\hspace{0.5cm} Construct the basis $S$: add the column vector $X_l^j$ to the matrix $S_l^k$
+\State\hspace{0.5cm} Exchange the local solution vector $X_l^j$ with the neighboring clusters
+\State\hspace{0.5cm} Compute the dense matrix $R$: $R_l^{k,j}=\sum^L_{i=1}A_{li}X_i^j$ 
+\State\textbf{end for} 
+\State Minimization $\|b-R\alpha\|_2$: \Call{UpdateMinimizer}{$S_l$, $R$, $b$, $k$}
+\State Local solution of the linear system $Ax=b$: $X_l^k=\tilde{X}_l^k$
+\State Exchange the local minimizer $\tilde{X}_l^k$ with the neighboring clusters
+\EndFor
+
+\Statex
+
+\Function {InnerSolver}{$x^0$, $j$}
+\State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$
+\State Solving the local splitting $A_{ll}X_l^j=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the initial guess
+\State \Return $X_l^j$
+\EndFunction
+
+\Statex
+
+\Function {UpdateMinimizer}{$S_l$, $R$, $b$, $k$}
+\State Solving the normal equations $(R^k)^TR^k\alpha^k=(R^k)^Tb$ in parallel by $L$ clusters using the parallel CGNR method
+\State Compute the local minimizer: $\tilde{X}_l^k=S_l^k\alpha^k$
+\State \Return $\tilde{X}_l^k$
+\EndFunction
+\end{algorithmic}
+\label{algo:01}
+\end{algorithm}
+
+The  main key points  of the  multisplitting method  to solve  a large
+sparse  linear  system  are  given in  Algorithm~\ref{algo:01}.   This
+algorithm is based on a two-stage method with a minimization using the
+GMRES iterative method as an  inner solver. It is executed in parallel
+by  each cluster  of processors.   The matrices  and vectors  with the
+subscript  $l$ represent  the local  data for  the cluster  $l$, where
+$l\in\{1,\ldots,L\}$. The two-stage solver uses two different parallel
+iterative algorithms:  the GMRES method  to solve each splitting  on a
+cluster of processors, and the CGNR method executed in parallel by all
+clusters  to minimize  the  function error  over  the Krylov  subspace
+spanned by  $S$.  The  algorithm requires two  global synchronizations
+between the $L$  clusters. The first one is  performed at line~$12$ in
+Algorithm~\ref{algo:01}  to exchange  the local  values of  the vector
+solution $x$ (i.e. the  minimizer $\tilde{x}$) required to restart the
+multisplitting  solver. The  second  one is  needed  to construct  the
+matrix $R$ of  the Krylov subspace.  We choose  to perform this latter
+synchronization $s$  times in every  outer iteration $k$  (line~$7$ in
+Algorithm~\ref{algo:01}). This is a straightforward way to compute the
+matrix-matrix    multiplication     $R=AS$.     We    implement    all
+synchronizations   by   using   the   MPI   collective   communication
+subroutines.
+
+
+\section{Experiments}
+
+In order  to illustrate  the interest  of our algorithm.   We have  compared our
+algorithm  with  the  GMRES  method  which  a very  well  used  method  in  many
+situations.  We have chosen to focus on only one problem which is very simple to
+implement: a 3 dimension Poisson problem.
+
+\begin{equation}
+\left\{
+                \begin{array}{ll}
+                  \nabla u&=f \mbox{~in~} \omega\\
+                  u &=0 \mbox{~on~}  \Gamma=\partial \omega
+                \end{array}
+              \right.
+\end{equation}
 
 
+After discretization, with a finite  difference scheme, a seven point stencil is
+used. It  is well-known that the  spectral radius of  matrices representing such
+problems are very close to 1.  Moreover, the larger the number of discretization
+points is,  the closer to 1  the spectral radius  is.  Hence, to solve  a matrix
+obtained for  a 3D Poisson  problem, the number  of iterations is high.  Using a
+preconditioner  it  is   possible  to  reduce  the  number   of  iterations  but
+preconditioners are not scalable when using many cores.
+
+Doing many experiments  with many cores is  not easy and require to  access to a
+supercomputer  with several  hours for  developping  a code  and then  improving
+it. In the following we presented  some experiments we could achieved out on the
+Hector architecture,  the previous UK's  high-end computing resource,  funded by
+the UK Research Councils, which has been stopped in the early 2014.
+
+In the experiments  we report the size of the 3D  poisson considered
+
+
+The first column  shows the size of the  problem The size is chosen  in order to
+have approximately 50,000 components per core.  The second column represents the
+number of  cores used. In parenthesis,  there is the decomposition  used for the
+Krylov multisplitting. The  third column and the sixth  column respectively show
+the execution time for the GMRES  and the Kyrlow multisplitting code. The fourth
+and  the   seventh  column   describes  the  number   of  iterations.   For  the
+multisplitting  code, the  total number  of inner  iterations is  represented in
+parenthesis.
+
+ We  also give  the other parameters:  the restart  for the GRMES method....
+
+\begin{table}[p]
+\begin{center}
+\begin{tabular}{|c|c||c|c|c||c|c|c||c|} 
+\hline
+\multirow{2}{*}{Pb size}&\multirow{2}{*}{Nb. cores} &  \multicolumn{3}{c||}{GMRES} &  \multicolumn{3}{c||}{Krylov Multisplitting} & \multirow{2}{*}{Ratio}\\
+ \cline{3-8}
+           &                   &  Time (s) & nb Iter. & $\Delta$  &   Time (s)& nb Iter. & $\Delta$ & \\
+\hline
+
+$590^3$ & 4096 (2x2048)        &  433.1    & 55,494    & 4.92e-7  &  74.1    & 1,101(8,211) & 6.62e-08  & 5.84   \\
+\hline
+$743^3$ & 8192 (2x4096)        & 704.4     & 87,822    & 4.80e-07 &  151.2   & 3,061(14,914) & 5.87e-08 & 4.65    \\
+\hline
+$743^3$ & 8192 (4x2048)        & 704.4     & 87,822    & 4.80e-07 &  110.3   & 1,531(12,721) & 1.47e-07& 6.39  \\
+\hline
+
+\end{tabular}
+\caption{Results without preconditioner}
+\label{tab1}
+\end{center}
+\end{table}
+
+
+\begin{table}[p]
+\begin{center}
+\begin{tabular}{|c|c||c|c|c||c|c|c||c|} 
+\hline
+\multirow{2}{*}{Pb size}&\multirow{2}{*}{Nb. cores} &  \multicolumn{3}{c||}{GMRES} &  \multicolumn{3}{c||}{Krylov Multisplitting} & \multirow{2}{*}{Ratio}\\
+ \cline{3-8}
+           &                   &  Time (s) & nb Iter. & $\Delta$  &   Time (s)& nb Iter. & $\Delta$ & \\
+\hline
+
+$590^3$ & 4096 (2x2048)        &  433.0    & 55,494    & 4.92e-7  &  80.4    & 1,091(9,545) & 7.64e-08  & 5.39   \\
+\hline
+$743^3$ & 8192 (2x4096)        & 704.4     & 87,822    & 4.80e-07 &  110.2   & 1,401(12,379) & 1.11e-07 & 6.39    \\
+\hline
+$743^3$ & 8192 (4x2048)        & 704.4     & 87,822    & 4.80e-07 &  139.8   & 1,891(15,960) & 1.60e-07& 5.03  \\
+\hline
+
+\end{tabular}
+\caption{Results with preconditioner}
+\label{tab2}
+\end{center}
+\end{table}
+
+\section{Conclusion and perspectives}
+
+Other applications (=> other matrices)\\
+Larger experiments\\
+Async\\
+Overlapping
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%