+communications to perform matrix-vector products and reduction operations.
+Preconditionners can be used in order to increase the convergence of iterative
+solvers. However, most of the good preconditionners are not sclalable when
+thousands of cores are used.
+
+
+A completer...
+On ne peut pas parler de tout...\\
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%
+%% BEGIN
+%%%%%%%%%%%%%%%%%%%%%%%
+The key idea of the multisplitting method for solving a large system of linear equations
+$Ax=b$ consists in partitioning the matrix $A$ in $L$ several ways
+\begin{equation}
+A = M_l - N_l,~l\in\{1,\ldots,L\},
+\label{eq01}
+\end{equation}
+where $M_l$ are nonsingular matrices. Then the linear system is solved by iteration based
+on the multisplittings as follows
+\begin{equation}
+x^{k+1}=\displaystyle\sum^L_{l=1} E_l M^{-1}_l (N_l x^k + b),~k=1,2,3,\ldots
+\label{eq02}
+\end{equation}
+where $E_l$ are non-negative and diagonal weighting matrices such that $\sum^L_{l=1}E_l=I$ ($I$ is an identity matrix).
+Thus the convergence of such a method is dependent on the condition
+\begin{equation}
+\rho(\displaystyle\sum^L_{l=1}E_l M^{-1}_l N_l)<1.
+\label{eq03}
+\end{equation}
+
+The advantage of the multisplitting method is that at each iteration $k$ there are $L$ different linear
+systems
+\begin{equation}
+y_l^k=M^{-1}_l N_l x_l^{k-1} + M^{-1}_l b,~l\in\{1,\ldots,L\},
+\label{eq04}
+\end{equation}
+to be solved independently by a direct or an iterative method, where $y_l^k$ is the solution of the local system.
+A multisplitting method using an iterative method for solving the $L$ linear systems is called an inner-outer
+iterative method or a two-stage method. The solution of the global linear system at the iteration $k$ is computed
+as follows
+\begin{equation}
+x^k = \displaystyle\sum^L_{l=1} E_l y_l^k,
+\label{eq05}
+\end{equation}
+In the case where the diagonal weighting matrices $E_l$ have only zero and one factors (i.e. $y_l^k$ are disjoint vectors),
+the multisplitting method is non-overlapping and corresponds to the block Jacobi method.
+%%%%%%%%%%%%%%%%%%%%%%%
+%% END
+%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Related works}
+
+
+A general framework for studying parallel multisplitting has been presented in
+\cite{o1985multi} by O'Leary and White. Convergence conditions are given for the
+most general case. Many authors improved multisplitting algorithms by proposing
+for example a asynchronous version \cite{bru1995parallel} and convergence
+condition \cite{bai1999block,bahi2000asynchronous} in this case or other
+two-stage algorithms~\cite{frommer1992h,bru1995parallel}
+
+In \cite{huang1993krylov}, the authors proposed a parallel multisplitting
+algorithm in which all the tasks except one are devoted to solve a sub-block of
+the splitting and to send their local solution to the first task which is in
+charge to combine the vectors at each iteration. These vectors form a Krylov
+basis for which the first tasks minimize the error function over the basis to
+increase the convergence, then the other tasks receive the update solution until
+convergence of the global system.
+
+
+
+In \cite{couturier2008gremlins}, the authors proposed practical implementations
+of multisplitting algorithms that take benefit from multisplitting algorithms to
+solve large scale linear systems. Inner solvers could be based on scalar direct
+method with the LU method or scalar iterative one with GMRES.
+