+Let $Ax=b$ be a given large and sparse linear system of $n$ equations to solve in parallel on $L$ clusters of processors, physically adjacent or geographically distant, where $A\in\mathbb{R}^{n\times n}$ is a square and non-singular matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$ is the right-hand side vector. The multisplitting of this linear system is defined as follows
+\begin{equation}
+\left\{
+\begin{array}{lll}
+A & = & [A_{1}, \ldots, A_{L}]\\
+x & = & [X_{1}, \ldots, X_{L}]\\
+b & = & [B_{1}, \ldots, B_{L}]
+\end{array}
+\right.
+\label{sec03:eq01}
+\end{equation}
+where for $\ell\in\{1,\ldots,L\}$, $A_\ell$ is a rectangular block of size $n_\ell\times n$ and $X_\ell$ and $B_\ell$ are sub-vectors of size $n_\ell$ each, such that $\sum_\ell n_\ell=n$. In this work, we use a row-by-row splitting without overlapping in such a way that successive rows of sparse matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster. So, the multisplitting format of the linear system is defined as follows
+\begin{equation}
+\forall \ell\in\{1,\ldots,L\} \mbox{,~} A_{\ell \ell}X_\ell + \displaystyle\sum_{\substack{m=1\\m\neq\ell}}^L A_{\ell m}X_m = B_\ell,
+\label{sec03:eq02}
+\end{equation}
+where $A_{\ell m}$ is a sub-block of size $n_\ell\times n_m$ of the rectangular matrix $A_\ell$, $X_m\neq X_\ell$ is a sub-vector of size $n_m$ of the solution vector $x$ and $\sum_{m\neq \ell}n_m+n_\ell=n$, for all $m\in\{1,\ldots,L\}$.
+
+Our multisplitting method proceeds by iteration to solve the linear system in such a way that each sub-system
+\begin{equation}
+\left\{
+\begin{array}{l}
+A_{\ell \ell}X_\ell = Y_\ell \mbox{,~such that}\\
+Y_\ell = B_\ell - \displaystyle\sum_{\substack{m=1\\m\neq \ell}}^{L}A_{\ell m}X_m,
+\end{array}
+\right.
+\label{sec03:eq03}
+\end{equation}
+is solved independently by a {\it cluster of processors} and communications are required to update the right-hand side vectors $Y_\ell$, such that the vectors $X_m$ represent the data dependencies between the clusters. In this work, we use the parallel restarted GMRES method~\cite{ref34} as an inner iteration method to solve sub-systems~(\ref{sec03:eq03}). GMRES is one of the most used Krylov iterative methods to solve sparse linear systems. %In practice, GMRES is used with a preconditioner to improve its convergence. In this work, we used a preconditioning matrix equivalent to the main diagonal of sparse sub-matrix $A_{ll}$. This preconditioner is straightforward to implement in parallel and gives good performances in many situations.
+
+It should be noted that the convergence of the inner iterative solver for the
+different sub-systems~(\ref{sec03:eq03}) does not necessarily involve the
+convergence of the multisplitting method. It strongly depends on the properties
+of the global sparse linear system to be
+solved~\cite{o1985multi,ref18}. Furthermore, the splitting of the linear system
+among several clusters of processors increases the spectral radius of the
+iteration matrix, thereby slowing the convergence. In fact, the larger the
+number of splitting is, the larger the spectral radius is. In this paper, we
+based on the work presented in~\cite{huang1993krylov} to increase the
+convergence and improve the scalability of the multisplitting methods.
+
+In order to accelerate the convergence, we implemented the outer iteration of the multisplitting solver as a Krylov iterative method which minimizes some error function over a Krylov subspace~\cite{S96}. The Krylov subspace that we used is spanned by a basis composed of successive solutions issued from solving the $L$ splittings~(\ref{sec03:eq03})
+\begin{equation}
+S=\{x^1,x^2,\ldots,x^s\},~s\leq n,
+\label{sec03:eq04}
+\end{equation}
+where for $j\in\{1,\ldots,s\}$, $x^j=[X_1^j,\ldots,X_L^j]$ is a solution of the global linear system. The advantage of such a Krylov subspace is that we need neither an orthogonal basis nor synchronizations between clusters to generate this basis.
+
+The multisplitting method is periodically restarted every $s$ iterations with a new initial guess $\tilde{x}=S\alpha$ which minimizes the error function $\|b-Ax\|_2$ over the Krylov subspace spanned by vectors of $S$. So $\alpha$ is defined as the solution of the large overdetermined linear system
+\begin{equation}
+R\alpha=b,
+\label{sec03:eq05}
+\end{equation}
+where $R=AS$ is a dense rectangular matrix of size $n\times s$ and $s\ll n$. This leads us to solve a system of normal equations
+\begin{equation}
+R^TR\alpha=R^Tb,
+\label{sec03:eq06}
+\end{equation}
+which is associated with the least squares problem
+\begin{equation}
+\text{minimize}~\|b-R\alpha\|_2,
+\label{sec03:eq07}
+\end{equation}
+where $R^T$ denotes the transpose of matrix $R$. Since $R$ (i.e. $AS$) and $b$ are split among $L$ clusters, the symmetric positive definite system~(\ref{sec03:eq06}) is solved in parallel. Thus an iterative method would be more appropriate than a direct one to solve this system. We use the parallel Conjugate Gradient method for the normal equations CGNR~\cite{S96,refCGNR}.
+
+\begin{algorithm}[!t]
+\caption{A two-stage linear solver with inner iteration GMRES method}
+\begin{algorithmic}[1]
+\Input $A_\ell$ (sparse sub-matrix), $B_\ell$ (right-hand side sub-vector)
+\Output $X_\ell$ (solution sub-vector)\vspace{0.2cm}
+\State Load $A_\ell$, $B_\ell$
+\State Set the initial guess $x^0$
+\State Set the minimizer $\tilde{x}^0=x^0$
+\For {$k=1,2,3,\ldots$ until the global convergence}
+\State Restart with $x^0=\tilde{x}^{k-1}$:
+\For {$j=1,2,\ldots,s$}
+\State \label{line7}Inner iteration solver: \Call{InnerSolver}{$x^0$, $j$}
+\State Construct basis $S$: add column vector $X_\ell^j$ to the matrix $S_\ell^k$
+\State Exchange local values of $X_\ell^j$ with the neighboring clusters
+\State Compute dense matrix $R$: $R_\ell^{k,j}=\sum^L_{i=1}A_{\ell i}X_i^j$
+\EndFor
+\State \label{line12}Minimization $\|b-R\alpha\|_2$: \Call{UpdateMinimizer}{$S_\ell$, $R$, $b$, $k$}
+\State Local solution of linear system $Ax=b$: $X_\ell^k=\tilde{X}_\ell^k$
+\State Exchange the local minimizer $\tilde{X}_\ell^k$ with the neighboring clusters
+\EndFor
+
+\Statex
+
+\Function {InnerSolver}{$x^0$, $j$}
+\State Compute local right-hand side $Y_\ell = B_\ell - \sum^L_{\substack{m=1\\m\neq \ell}}A_{\ell m}X_m^0$
+\State Solving local splitting $A_{\ell \ell}X_\ell^j=Y_\ell$ using parallel GMRES method, such that $X_\ell^0$ is the initial guess
+\State \Return $X_\ell^j$
+\EndFunction
+
+\Statex
+
+\Function {UpdateMinimizer}{$S_\ell$, $R$, $b$, $k$}
+\State Solving normal equations $(R^k)^TR^k\alpha^k=(R^k)^Tb$ in parallel by $L$ clusters using parallel CGNR method
+\State Compute local minimizer $\tilde{X}_\ell^k=S_\ell^k\alpha^k$
+\State \Return $\tilde{X}_\ell^k$
+\EndFunction
+\end{algorithmic}
+\label{algo:01}
+\end{algorithm}
+
+The main key points of our Krylov multisplitting method to solve a large sparse linear system are given in Algorithm~\ref{algo:01}. This algorithm is based on a two-stage method with a minimization using restarted GMRES iterative method as an inner solver. It is executed in parallel by each cluster of processors. Matrices and vectors with the subscript $\ell$ represent the local data for cluster $\ell$, where $\ell\in\{1,\ldots,L\}$. The two-stage solver uses two different parallel iterative algorithms: GMRES method to solve each splitting~(\ref{sec03:eq03}) on a cluster of processors, and CGNR method executed in parallel by all clusters to minimize the function error~(\ref{sec03:eq07}) over the Krylov subspace spanned by $S$. The algorithm requires two global synchronizations between $L$ clusters. The first one is performed at line~\ref{line12} in Algorithm~\ref{algo:01} to exchange local values of vector solution $x$ (i.e. the minimizer $\tilde{x}$) required to restart the multisplitting solver. The second one is needed to construct the matrix $R$. We chose to perform this latter synchronization $s$ times in every outer iteration $k$ (line~\ref{line7} in Algorithm~\ref{algo:01}). This is a straightforward way to compute the sparse matrix-dense matrix multiplication $R=AS$. We implemented all synchronizations by using message passing collective communications of MPI library.
+
+%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{Experiments}
+In order to illustrate the interest of our algorithm. We have compared our
+algorithm with the GMRES method which is a very well used method in many
+situations. We have chosen to focus on only one problem which is very simple to
+implement: a 3 dimension Poisson problem.
+
+\begin{equation}
+\left\{
+ \begin{array}{ll}
+ \nabla u&=f \mbox{~in~} \omega\\
+ u &=0 \mbox{~on~} \Gamma=\partial \omega
+ \end{array}
+ \right.
+\end{equation}
+
+After discretization, with a finite difference scheme, a seven point stencil is
+used. It is well-known that the spectral radius of matrices representing such
+problems are very close to 1. Moreover, the larger the number of discretization
+points is, the closer to 1 the spectral radius is. Hence, to solve a matrix
+obtained for a 3D Poisson problem, the number of iterations is high. Using a
+preconditioner it is possible to reduce the number of iterations but
+preconditioners are not scalable when using many cores.
+
+%Doing many experiments with many cores is not easy and requires to access to a supercomputer with several hours for developing a code and then improving it.
+In the following we present some experiments we could achieved out on the
+Hector architecture, the previous UK's high-end computing resource, funded by
+the UK Research Councils, which has been stopped in the early 2014.
+
+Table~\ref{tab1} shows the result of the experiments. The first column shows
+the size of the 3D Poisson problem. The size is chosen in order to have
+approximately 50,000 components per core. The second column represents the
+number of cores used. In parenthesis, there is the decomposition used for the
+Krylov multisplitting. The third column and the sixth column respectively show
+the execution time for the GMRES and the Krylov multisplitting codes. The fourth
+and the seventh column describes the number of iterations. For the
+multisplitting code, the total number of inner iterations is represented in
+parenthesis. For the GMRES code (alone and in the multisplitting version) the
+restart parameter is fixed to 16. The precision of the GMRES version is fixed to
+1e-6. For the multisplitting, there are two precisions, one for the external
+solver which is fixed to 1e-6 and another one for the inner solver (GMRES) which
+is fixed to 1e-10. It should be noted that a high precision is used but we also
+fixed a maximum number of iterations for each internal step. In practice, we
+limit the number of iterations in the internal step to 10. So an internal iteration is finished
+when the precision is reached or when the maximum internal number of iterations
+is reached. The precision and the maximum number of iterations of CGNR method are fixed to 1e-25 and 20 respectively. The size of the Krylov subspace basis $S$ is fixed to 10 vectors.
+
+\begin{table}[htbp]
+\begin{center}
+\begin{tabular}{|c|c||c|c|c||c|c|c||c|}
+\hline
+\multirow{2}{*}{Pb size}&\multirow{2}{*}{Nb. cores} & \multicolumn{3}{c||}{GMRES} & \multicolumn{3}{c||}{Krylov Multisplitting} & \multirow{2}{*}{Ratio}\\
+ \cline{3-8}
+ & & Time (s) & nb Iter. & $\Delta$ & Time (s)& nb Iter. & $\Delta$ & \\
+\hline
+$468^3$ & 2048 (2x1024) & 299.7 & 41,028 & 5.02e-8 & 48.4 & 691(6,146) & 8.24e-08 & 6.19 \\
+\hline
+$590^3$ & 4096 (2x2048) & 433.1 & 55,494 & 4.92e-7 & 74.1 & 1,101(8,211) & 6.62e-08 & 5.84 \\
+\hline
+$743^3$ & 8192 (2x4096) & 704.4 & 87,822 & 4.80e-07 & 151.2 & 3,061(14,914) & 5.87e-08 & 4.65 \\
+\hline
+$743^3$ & 8192 (4x2048) & 704.4 & 87,822 & 4.80e-07 & 110.3 & 1,531(12,721) & 1.47e-07& 6.39 \\
+\hline
+
+\end{tabular}
+\caption{Results}
+\label{tab1}
+\end{center}
+\end{table}
+
+
+From these experiments, it can be observed that the multisplitting version is
+always faster than the GMRES version. The acceleration gain of the
+multisplitting version is between 4 and 6. It can be noticed that the number of
+iterations is drastically reduced with the multisplitting version even it is not
+neglectable.
+
+\section{Conclusion and perspectives}
+We have implemented a Krylov multisplitting method to solve sparse linear systems on large-scale computing platforms. We have developed a synchronous two-stage method based on the block Jacobi multisplitting and uses GMRES iterative method as an inner iteration. Our contribution in this paper is twofold. First we have constituted a virtual multi-cluster environment based on processors of the computing platform on which each linear sub-system issued from the splitting is solved in parallel by a cluster of processors. Second, we have implemented the outer iteration of the multisplitting method as a Krylov subspace method which minimizes some error function. This increases the convergence and improves the scalability of the multisplitting method.
+
+We have tested our multisplitting method to solve the sparse linear system issued from the discretization of a 3D Poisson problem. We have compared its performances to the classical GMRES method on a supercomputer composed of 2048 to 8192 cores. The experimental results showed that the multisplitting method is about 4 to 6 times faster than the GMRES method for different sizes of the problem split into 2 or 4 blocks when using multisplitting method. Indeed, the GMRES method has difficulties to scale with many cores while the Krylov multisplitting method allows to hide latency and reduce the inter-cluster communications.
+
+In future works, we plan to conduct experiments on larger number of cores and test the scalability of our Krylov multisplitting method. It would be interesting to validate its performances to solve other linear/nonlinear and symmetric/nonsymmetric problems. Moreover, we intend to develop multisplitting methods based on asynchronous iteration in which communications are overlapped by computations. These methods would be interesting for platforms composed of distant clusters interconnected by a high-latency network. In addition, we intend to investigate the convergence improvements of our method by using preconditioning techniques for Krylov iterative methods and multisplitting methods with overlapping blocks.
+
+
+%Other applications (=> other matrices)\\
+%Larger experiments\\
+%Async\\
+%Overlapping\\
+%preconditioning