]> AND Private Git Repository - Krylov_multi.git/blobdiff - krylov_multi_reviewed.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
11-12-2014 v04
[Krylov_multi.git] / krylov_multi_reviewed.tex
index 1b041c9bb3c5374b38577461552334aab50dbcee..978a03a86e2ca3981f1c3fbbb27de7c5d23aa765 100644 (file)
@@ -320,10 +320,12 @@ The main key points of our Krylov multisplitting method to solve a large sparse
 
 \section{Experiments}
 \label{sec:04}
-In order to illustrate  the interest  of our algorithm, we have  compared our
-algorithm  with  the  GMRES  method  which  is a commonly  used  method  in  many
-situations.  We have chosen to focus on only one problem which is very simple to
-implement: a 3 dimension Poisson problem.
+%%% MODIFIE ***********************
+%%%********************************
+In order to illustrate the interest of our Krylov multisplitting algorithm, we have compared its performances with those of a classical block Jacobi multisplitting method and those of the GMRES method which is a commonly used method in many situations.
+%%%********************************
+%%%********************************
+ We have chosen to focus on only one problem which is very simple to implement: a 3 dimension Poisson problem.
 
 \begin{equation}
 \left\{
@@ -342,11 +344,36 @@ obtained for  a 3D Poisson  problem, the number  of iterations is high.  Using a
 preconditioner  it  is   possible  to  reduce  the  number   of  iterations  but
 preconditioners are not scalable when using many cores.
 
+
+%%% MODIFIE ***********************
+%%%********************************
+We have performed some experiments on an infiniband cluster of 3 nodes of Intel Xeon quad-core CPU E5620 2.40 GHz and 12 GB of memory. For the GMRES code (alone and in both multisplitting versions) the restart parameter is fixed to 16. The precision of the GMRES version is fixed to 1e-6. For the multisplitting versions, there are two precisions, one for the external solver which is fixed to 1e-6 and another one for the inner solver (GMRES) which is fixed to 1e-10. It should be noted that a high precision is used but we also fixed a maximum number of iterations for each internal step. In practice, we limit the number of iterations in the internal step to 10. So an internal iteration is finished when the precision is reached or when the maximum internal number of iterations is reached. The precision and the maximum number of iterations of CGNR method used by our Krylov multisplitting algorithm are fixed to 1e-25 and 20 respectively. The size of the Krylov subspace basis S is fixed to 10 vectors.
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[width=0.8\textwidth]{strong_scaling_150x150x150}
+\caption{Strong scaling with 3 blocks of cores}
+\label{fig:001}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+\begin{tabular}{c}
+\includegraphics[width=0.8\textwidth]{weak_scaling_280k} \\ (a) \includegraphics[width=0.8\textwidth]{weak_scaling_280K}\\
+\end{tabular}
+\caption{Weak scaling with 3 blocks of cores}
+\label{fig:001}
+\end{figure}
+
+%%%********************************
+%%%********************************
+
+
 %Doing many experiments  with many cores is  not easy and requires to  access to a supercomputer  with several  hours for  developing  a code  and then  improving it. 
 In the following we present some experiments we could achieve out on the Hector
 architecture,  a UK's  high-end computing  resource, funded  by the  UK Research
 Councils~\cite{hector}.  This is  a Cray  XE6 supercomputer,  equipped  with two
-16-core AMD  Opteron 2.3 Ghz  and 32 GB  of memory. Machines  are interconnected
+16-core AMD  Opteron 2.3 GHz  and 32 GB  of memory. Machines  are interconnected
 with a 3D torus.
 
 Table~\ref{tab1} shows  the result of  the experiments.  The first  column shows
@@ -414,7 +441,7 @@ In Figure~\ref{fig:01}, the number of iterations per second is reported for both
 GMRES and the  multisplitting methods. It should be noted that  we took only the
 inner number  of iterations (i.e.  the GMRES iterations) for  the multisplitting
 method. Iterations of CGNR are not  taken into account. From this figure, it can
-be seen that the  number of iteration per second is higher  with GMRES but it is
+be seen that the  number of iterations per second is higher  with GMRES but it is
 not  so different  with the  multisplitting method.  For the  case  with $8,192$
 cores,  the number of  iterations per  second with  4 clusters  is approximately
 equals to 115. So it is not different from GMRES.
@@ -438,8 +465,6 @@ specifically on  that point.  Moreover,  we think that  it is very  important to
 analyze the convergence  of this method compared to other  method. In this work,
 we have  focused on the  description of this  method and its performance  with a
 typical application. Many other investigations are required for this method as explained in the next section.
-
-
 %%%*******************************
 %%%*******************************