Iterative methods are used to solve large sparse linear systems of equations of
the form $Ax=b$ because they are easier to parallelize than direct ones. Many
-iterative methods have been proposed and adapted by many researchers. When
-solving large linear systems with many cores, iterative methods often suffer
-from scalability problems. This is due to their need for collective
+iterative methods have been proposed and adapted by many researchers. For
+example, the GMRES method and the Conjugate Gradient method are very well known
+and used by many researchers ~\cite{S96}. Both the method are based on the
+Krylov subspace which consists in forming a basis of the sequence of successive
+matrix powers times the initial residual.
+
+When solving large linear systems with many cores, iterative methods often
+suffer from scalability problems. This is due to their need for collective
communications to perform matrix-vector products and reduction operations.
Preconditionners can be used in order to increase the convergence of iterative
solvers. However, most of the good preconditionners are not sclalable when
\label{eq04}
\end{equation}
to be solved independently by a direct or an iterative method, where
-$v_l^k$ is the solution of the local sub-system. A multisplitting
-method using an iterative method for solving the $L$ linear
-sub-systems is called an inner-outer iterative method or a two-stage
-method. The results $v_l^k$ obtained from the different
-splittings~(\ref{eq04}) are combined to compute the solution $x^k$ of
-the linear system by using the diagonal weighting matrices
+$v_l^k$ is the solution of the local sub-system. Thus, the
+calculations of $v_l^k$ may be performed in parallel by a set of
+processors. A multisplitting method using an iterative method for
+solving the $L$ linear sub-systems is called an inner-outer iterative
+method or a two-stage method. The results $v_l^k$ obtained from the
+different splittings~(\ref{eq04}) are combined to compute the solution
+$x^k$ of the linear system by using the diagonal weighting matrices
\begin{equation}
x^k = \displaystyle\sum^L_{l=1} E_l v_l^k,
\label{eq05}
\right.
\label{sec03:eq01}
\end{equation}
-where for all $l\in\{1,\ldots,L\}$ $A_l$ is a rectangular block of size $n_l\times n$
+where for $l\in\{1,\ldots,L\}$, $A_l$ is a rectangular block of size $n_l\times n$
and $X_l$ and $B_l$ are sub-vectors of size $n_l$, such that $\sum_ln_l=n$. In this
case, we use a row-by-row splitting without overlapping in such a way that successive
rows of the sparse matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster.
\end{equation}
is solved independently by a cluster of processors and communication are required to
update the right-hand side vectors $Y_l$, such that the vectors $X_i$ represent the data
-dependencies between the clusters. In this case, the parallel GMRES method is used
-as an inner iteration method for solving the linear sub-systems~(\ref{sec03:eq03}).
-
-
+dependencies between the clusters. In this work, we use the GMRES method as an inner
+iteration method for solving the sub-systems~(\ref{sec03:eq03}). It is a well-known
+iterative method which gives good performances for solving sparse linear systems in
+parallel on a cluster of processors.
+
+It should be noted that the convergence of the inner iterative solver for the different
+linear sub-systems~(\ref{sec03:eq03}) does not necessarily involve the convergence of the
+multisplitting method. It strongly depends on the properties of the sparse linear system
+to be solved and the computing environment~\cite{o1985multi,ref18}. Furthermore, the multisplitting
+of the linear system among several clusters of processors increases the spectral radius
+of the iteration matrix, thereby slowing the convergence. In this paper, we based on the
+work presented in~\cite{huang1993krylov} to increase the convergence and improve the
+scalability of the multisplitting methods.
+
+In order to accelerate the convergence, we implement the outer iteration of the multisplitting
+solver as a Krylov subspace method which minimizes some error function over a Krylov subspace~\cite{S96}.
+The Krylov space of the method that we used is spanned by a basis composed of the solutions issued from
+solving the $L$ splittings~(\ref{sec03:eq03})
+\begin{equation}
+\{x^1,x^2,\ldots,x^s\},~s\ll n,
+\label{sec03:eq04}
+\end{equation}
+where for $k\in\{1,\ldots,s\}$, $x^k=[X_1^k,\ldots,X_L^k]$ is a solution of the global linear
+system.
+%The advantage such a method is that the Krylov subspace does not need to be spanned by an orthogonal basis.
+The advantage of such a method is that the Krylov subspace need neither to be spanned by an orthogonal
+basis nor synchronizations between the different clusters to generate this basis.