-It should be noted that the convergence of the inner iterative solver for the different sub-systems~(\ref{sec03:eq03}) does not necessarily involve the convergence of the multisplitting method. It strongly depends on the properties of the global sparse linear system to be solved and the computing environment~\cite{o1985multi,ref18}. Furthermore, the multisplitting of the linear system among several clusters of processors increases the spectral radius of the iteration matrix, thereby slowing the convergence. In this paper, we based on the work presented in~\cite{huang1993krylov} to increase the convergence and improve the scalability of the multisplitting methods.
+It should be noted that the convergence of the inner iterative solver for the
+different sub-systems~(\ref{sec03:eq03}) does not necessarily involve the
+convergence of the multisplitting method. It strongly depends on the properties
+of the global sparse linear system to be
+solved~\cite{o1985multi,ref18}. Furthermore, the splitting of the linear system
+among several clusters of processors increases the spectral radius of the
+iteration matrix, thereby slowing the convergence. In fact, the larger the
+number of splitting is, the larger the spectral radius is. In this paper, we
+based on the work presented in~\cite{huang1993krylov} to increase the
+convergence and improve the scalability of the multisplitting methods.