]> AND Private Git Repository - Krylov_multi.git/blobdiff - krylov_multi.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
01-05-2014bb
[Krylov_multi.git] / krylov_multi.tex
index 8e72a92ce37064218e6020b6e9ab6e0e84136c56..275700cd936214c32e50f9593f8d08c56611053d 100644 (file)
 \newcommand{\Prec}{\mathit{prec}}
 \newcommand{\Ratio}{\mathit{Ratio}}
 
 \newcommand{\Prec}{\mathit{prec}}
 \newcommand{\Ratio}{\mathit{Ratio}}
 
-%\usepackage{xspace}
-%\usepackage[textsize=footnotesize]{todonotes}
-%\newcommand{\LZK}[2][inline]{%
-%\todo[color=green!40,#1]{\sffamily\textbf{LZK:} #2}\xspace}
+\def\changemargin#1#2{\list{}{\rightmargin#2\leftmargin#1}\item[]}
+\let\endchangemargin=\endlist
 
 \title{A scalable multisplitting algorithm for solving large sparse linear systems} 
 \date{}
 
 \title{A scalable multisplitting algorithm for solving large sparse linear systems} 
 \date{}
@@ -67,19 +65,41 @@ Preconditioners can be  used in order to increase  the convergence of iterative
 solvers.   However, most  of the  good preconditioners  are not  scalable when
 thousands of cores are used.
 
 solvers.   However, most  of the  good preconditioners  are not  scalable when
 thousands of cores are used.
 
-Traditional iterative  solvers have  global synchronizations that  penalize the
-scalability.   Two  possible solutions  consists  either  in using  asynchronous
-iterative  methods~\cite{ref18} or  to  use multisplitting  algorithms. In  this
-paper, we will  reconsider the use of a multisplitting  method. In opposition to
-traditional  multisplitting  method  that  suffer  from  slow  convergence,  as
-proposed  in~\cite{huang1993krylov},  the  use  of a  minimization  process  can
-drastically improve the convergence.
+%Traditional iterative  solvers have  global synchronizations that  penalize the
+%scalability.   Two  possible solutions  consists  either  in using  asynchronous
+%iterative  methods~\cite{ref18} or  to  use multisplitting  algorithms. In  this
+%paper, we will  reconsider the use of a multisplitting  method. In opposition to
+%traditional  multisplitting  method  that  suffer  from  slow  convergence,  as
+%proposed  in~\cite{huang1993krylov},  the  use  of a  minimization  process  can
+%drastically improve the convergence.
+
+Traditional parallel iterative solvers are based on fine-grain computations that
+frequently  require  data exchanges  between  computing  nodes  and have  global
+synchronizations  that penalize  the  scalability. Particularly,  they are  more
+penalized on large  scale architectures or on distributed  platforms composed of
+distant  clusters interconnected  by  a high-latency  network.  It is  therefore
+imperative to develop coarse-grain based algorithms to reduce the communications
+in the  parallel iterative  solvers. Two possible  solutions consists  either in
+using  asynchronous  iterative  methods~\cite{ref18}  or to  use  multisplitting
+algorithms.  In this  paper,  we will  reconsider  the use  of a  multisplitting
+method. In opposition to traditional multisplitting method that suffer from slow
+convergence, as  proposed in~\cite{huang1993krylov},  the use of  a minimization
+process can drastically improve the convergence.
+
+The present paper is  organized as follows. First, Section~\ref{sec:02} presents
+some  related  works and  the  principle  of  multisplitting methods.  Then,  in
+Section~\ref{sec:03}  is presented  the algorithm  of our  Krylov multisplitting
+method based  on inner-outer  iterations. Finally, in  Section~\ref{sec:04}, the
+parallel experiments on Hector architecture  show the performances of the Krylov
+multisplitting algorithm compared to the classical GMRES algorithm to solve a 3D
+Poisson problem.
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%
 
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%
 
-\section{Related works and presention of the multisplitting method}
+\section{Related works and presentation of the multisplitting method}
+\label{sec:02}
 A general framework  for studying parallel multisplitting has  been presented in~\cite{o1985multi}
 by O'Leary and White. Convergence conditions are given for the
 most general case.  Many authors improved multisplitting algorithms by proposing
 A general framework  for studying parallel multisplitting has  been presented in~\cite{o1985multi}
 by O'Leary and White. Convergence conditions are given for the
 most general case.  Many authors improved multisplitting algorithms by proposing
@@ -142,6 +162,7 @@ In the case where the diagonal weighting matrices $E_\ell$ have only zero and on
 %%%%%%%%%%%%%%%%%%%%%%%%
 
 \section{A two-stage method with a minimization}
 %%%%%%%%%%%%%%%%%%%%%%%%
 
 \section{A two-stage method with a minimization}
+\label{sec:03}
 Let $Ax=b$ be a given large and sparse linear system of $n$ equations to solve in parallel on $L$ clusters of processors, physically adjacent or geographically distant, where $A\in\mathbb{R}^{n\times n}$ is a square and non-singular matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$ is the right-hand side vector. The multisplitting of this linear system is defined as follows
 \begin{equation}
 \left\{
 Let $Ax=b$ be a given large and sparse linear system of $n$ equations to solve in parallel on $L$ clusters of processors, physically adjacent or geographically distant, where $A\in\mathbb{R}^{n\times n}$ is a square and non-singular matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$ is the right-hand side vector. The multisplitting of this linear system is defined as follows
 \begin{equation}
 \left\{
@@ -253,6 +274,7 @@ The main key points of our Krylov multisplitting method to solve a large sparse
 %%%%%%%%%%%%%%%%%%%%%%%%
 
 \section{Experiments}
 %%%%%%%%%%%%%%%%%%%%%%%%
 
 \section{Experiments}
+\label{sec:04}
 In order to illustrate  the interest  of our algorithm. We have  compared our
 algorithm  with  the  GMRES  method  which  is a very  well  used  method  in  many
 situations.  We have chosen to focus on only one problem which is very simple to
 In order to illustrate  the interest  of our algorithm. We have  compared our
 algorithm  with  the  GMRES  method  which  is a very  well  used  method  in  many
 situations.  We have chosen to focus on only one problem which is very simple to
@@ -302,6 +324,8 @@ is reached. The precision and the maximum number of iterations of CGNR method ar
 
 \begin{table}[htbp]
 \begin{center}
 
 \begin{table}[htbp]
 \begin{center}
+\begin{changemargin}{-1.8cm}{0cm}
+\begin{small}
 \begin{tabular}{|c|c||c|c|c||c|c|c||c|} 
 \hline
 \multirow{2}{*}{Pb size}&\multirow{2}{*}{Nb. cores} &  \multicolumn{3}{c||}{GMRES} &  \multicolumn{3}{c||}{Krylov Multisplitting} & \multirow{2}{*}{Ratio}\\
 \begin{tabular}{|c|c||c|c|c||c|c|c||c|} 
 \hline
 \multirow{2}{*}{Pb size}&\multirow{2}{*}{Nb. cores} &  \multicolumn{3}{c||}{GMRES} &  \multicolumn{3}{c||}{Krylov Multisplitting} & \multirow{2}{*}{Ratio}\\
@@ -320,6 +344,8 @@ $743^3$ & 8,192 (4x2,048)        & 704.4     & 87,822    & 4.80e-07 &  110.3   &
 \end{tabular}
 \caption{Results}
 \label{tab1}
 \end{tabular}
 \caption{Results}
 \label{tab1}
+\end{small}
+\end{changemargin}
 \end{center}
 \end{table}
 
 \end{center}
 \end{table}
 
@@ -366,6 +392,8 @@ intend  to investigate  the  convergence  improvements of  our  method by  using
 preconditioning  techniques  for  Krylov  iterative methods  and  multisplitting
 methods with overlapping blocks.
 
 preconditioning  techniques  for  Krylov  iterative methods  and  multisplitting
 methods with overlapping blocks.
 
+\section{Acknowledgement}
+The authors would like to thank Mark Bull of the EPCC his fruitful remarks and the facilities of HECToR.
 
 %Other applications (=> other matrices)\\
 %Larger experiments\\
 
 %Other applications (=> other matrices)\\
 %Larger experiments\\