X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Krylov_multi.git/blobdiff_plain/0bd6f8155681a9b4fa6f0acc894282baebfe3395..6d8fffd4d9fc58efe4a9ff5d7cd81767782ba572:/krylov_multi.tex diff --git a/krylov_multi.tex b/krylov_multi.tex index 1dbd8cc..87ee227 100644 --- a/krylov_multi.tex +++ b/krylov_multi.tex @@ -67,19 +67,24 @@ Preconditioners can be used in order to increase the convergence of iterative solvers. However, most of the good preconditioners are not scalable when thousands of cores are used. -Traditional iterative solvers have global synchronizations that penalize the -scalability. Two possible solutions consists either in using asynchronous -iterative methods~\cite{ref18} or to use multisplitting algorithms. In this -paper, we will reconsider the use of a multisplitting method. In opposition to -traditional multisplitting method that suffer from slow convergence, as -proposed in~\cite{huang1993krylov}, the use of a minimization process can -drastically improve the convergence. +%Traditional iterative solvers have global synchronizations that penalize the +%scalability. Two possible solutions consists either in using asynchronous +%iterative methods~\cite{ref18} or to use multisplitting algorithms. In this +%paper, we will reconsider the use of a multisplitting method. In opposition to +%traditional multisplitting method that suffer from slow convergence, as +%proposed in~\cite{huang1993krylov}, the use of a minimization process can +%drastically improve the convergence. + +Traditional parallel iterative solvers are based on fine-grain computations that frequently require data exchanges between computing nodes and have global synchronizations that penalize the scalability. Particularly, they are more penalized on large scale architectures or on distributed platforms composed of distant clusters interconnected by a high-latency network. It is therefore imperative to develop coarse-grain based algorithms to reduce the communications in the parallel iterative solvers. Two possible solutions consists either in using asynchronous iterative methods~\cite{ref18} or to use multisplitting algorithms. In this paper, we will reconsider the use of a multisplitting method. In opposition to traditional multisplitting method that suffer from slow convergence, as proposed in~\cite{huang1993krylov}, the use of a minimization process can drastically improve the convergence. + +The present paper is organized as follows. First in Section~\ref{sec:02} is given some related works and the main principle of multisplitting methods. Then, in Section~\ref{sec:03} is presented the algorithm of our Krylov multisplitting method based on inner-outer iterations. Finally, in Section~\ref{sec:04}, the parallel experiments on Hector architecture show the performances of the Krylov multisplitting algorithm compared to the classical GMRES algorithm to solve a 3D Poisson problem. %%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%% \section{Related works and presentation of the multisplitting method} +\label{sec:02} A general framework for studying parallel multisplitting has been presented in~\cite{o1985multi} by O'Leary and White. Convergence conditions are given for the most general case. Many authors improved multisplitting algorithms by proposing @@ -142,6 +147,7 @@ In the case where the diagonal weighting matrices $E_\ell$ have only zero and on %%%%%%%%%%%%%%%%%%%%%%%% \section{A two-stage method with a minimization} +\label{sec:03} Let $Ax=b$ be a given large and sparse linear system of $n$ equations to solve in parallel on $L$ clusters of processors, physically adjacent or geographically distant, where $A\in\mathbb{R}^{n\times n}$ is a square and non-singular matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$ is the right-hand side vector. The multisplitting of this linear system is defined as follows \begin{equation} \left\{ @@ -253,6 +259,7 @@ The main key points of our Krylov multisplitting method to solve a large sparse %%%%%%%%%%%%%%%%%%%%%%%% \section{Experiments} +\label{sec:04} In order to illustrate the interest of our algorithm. We have compared our algorithm with the GMRES method which is a very well used method in many situations. We have chosen to focus on only one problem which is very simple to