X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Krylov_multi.git/blobdiff_plain/22203a7ac6e2f98336a298e1c875f1b0580f5769..bff945938f0b91befb7ef3011e4a0e4837d2332f:/krylov_multi_reviewed.tex?ds=sidebyside diff --git a/krylov_multi_reviewed.tex b/krylov_multi_reviewed.tex index 978a03a..42a47d0 100644 --- a/krylov_multi_reviewed.tex +++ b/krylov_multi_reviewed.tex @@ -93,12 +93,13 @@ using asynchronous iterative methods~\cite{ref18} or in using multisplitti algorithmss. In this paper, we will reconsider the use of a multisplitting method. In opposition to traditional multisplitting method that suffer from slow convergence, as proposed in~\cite{huang1993krylov}, the use of a minimization -process can drastically improve the convergence. +process can drastically improve the convergence.\\ %%% AJOUTE************************ %%%******************************* -In this work we develop a new parallel two-stage algorithm for large-scale clusters. Our objective is to mix between Krylov based iterative methods and the multisplitting method to improve the scalability. In fact Krylov subspace methods are well-known for their good convergence compared to others iterative methods. So our main contribution is to use the multisplitting method which splits the problem to solve into different blocks in order to reduce the large amount of communications and, to implement both inner and outer iterations as Krylov subspace iterations improving the convergence of the multisplitting algorithm. +\noindent {\bf Contributions:}\\ +In this work we develop a new parallel two-stage algorithm for large-scale clusters. Our objective is to mix between Krylov based iterative methods and the multisplitting method to improve the scalability. In fact Krylov subspace methods are well-known for their good convergence compared to others iterative methods. So our main contribution is to use the multisplitting method which splits the problem to solve into different blocks in order to reduce the large amount of communications and, to implement both inner and outer iterations as Krylov subspace iterations improving the convergence of the multisplitting algorithm.\\ %%%******************************* %%%******************************* @@ -345,6 +346,7 @@ preconditioner it is possible to reduce the number of iterations but preconditioners are not scalable when using many cores. + %%% MODIFIE *********************** %%%******************************** We have performed some experiments on an infiniband cluster of 3 nodes of Intel Xeon quad-core CPU E5620 2.40 GHz and 12 GB of memory. For the GMRES code (alone and in both multisplitting versions) the restart parameter is fixed to 16. The precision of the GMRES version is fixed to 1e-6. For the multisplitting versions, there are two precisions, one for the external solver which is fixed to 1e-6 and another one for the inner solver (GMRES) which is fixed to 1e-10. It should be noted that a high precision is used but we also fixed a maximum number of iterations for each internal step. In practice, we limit the number of iterations in the internal step to 10. So an internal iteration is finished when the precision is reached or when the maximum internal number of iterations is reached. The precision and the maximum number of iterations of CGNR method used by our Krylov multisplitting algorithm are fixed to 1e-25 and 20 respectively. The size of the Krylov subspace basis S is fixed to 10 vectors. @@ -359,16 +361,17 @@ We have performed some experiments on an infiniband cluster of 3 nodes of Intel \begin{figure}[htbp] \centering \begin{tabular}{c} -\includegraphics[width=0.8\textwidth]{weak_scaling_280k} \\ (a) \includegraphics[width=0.8\textwidth]{weak_scaling_280K}\\ +\includegraphics[width=0.8\textwidth]{weak_scaling_280k} \\ \includegraphics[width=0.8\textwidth]{weak_scaling_280K}\\ \end{tabular} \caption{Weak scaling with 3 blocks of cores} -\label{fig:001} +\label{fig:002} \end{figure} %%%******************************** %%%******************************** + %Doing many experiments with many cores is not easy and requires to access to a supercomputer with several hours for developing a code and then improving it. In the following we present some experiments we could achieve out on the Hector architecture, a UK's high-end computing resource, funded by the UK Research