X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Krylov_multi.git/blobdiff_plain/774e3ae76fae2fcab8efe8bf6bc2b61c0da65e09..09702354d347f9bf651fba24d04f262c757e2cc5:/krylov_multi.tex diff --git a/krylov_multi.tex b/krylov_multi.tex index 8685bd2..7a7e809 100644 --- a/krylov_multi.tex +++ b/krylov_multi.tex @@ -14,6 +14,7 @@ \title{A scalable multisplitting algorithm for solving large sparse linear systems} +\date{} @@ -28,7 +29,7 @@ \begin{abstract} -In this paper we revist the krylov multisplitting algorithm presented in +In this paper we revisit the krylov multisplitting algorithm presented in \cite{huang1993krylov} which uses a scalar method to minimize the krylov iterations computed by a multisplitting algorithm. Our new algorithm is based on a parallel multisplitting algorithm with few blocks of large size using a @@ -208,7 +209,7 @@ the vectors $X_i$ represent the data dependencies between the clusters. In this work, we use the parallel GMRES method~\cite{ref34} as an inner iteration method to solve the sub-systems~(\ref{sec03:eq03}). It is a well-known iterative method -which gives good performances for solving sparse linear systems in +which gives good performances to solve sparse linear systems in parallel on a cluster of processors. It should be noted that the convergence of the inner iterative solver @@ -327,6 +328,36 @@ synchronizations by using the MPI collective communication subroutines. +\section{Experiments} + +In order to illustrate the interest of our algorithm. We have compared our +algorithm with the GMRES method which a very well used method in many +situations. We have chosen to focus on only one problem which is very simple to +implement: a 3 dimension Poisson problem. + +\begin{equation} +\left\{ + \begin{array}{ll} + \nabla u&=f \mbox{~in~} \omega\\ + u &=0 \mbox{~on~} \Gamma=\partial \omega + \end{array} + \right. +\end{equation} + +After discretization, with a finite difference scheme, a seven point stencil is +used. It is well-known that the spectral radius of matrices representing such +problems are very close to 1. Moreover, the larger the number of discretization +points is, the closer to 1 the spectral radius is. Hence, to solve a matrix +obtained for a 3D Poisson problem, the number of iterations is high. Using a +preconditioner it is possible to reduce the number of iterations but +preconditioners are not scalable when using many cores. + +\section{Conclusion and perspectives} + +Other applications (=> other matrices)\\ +Larger experiments\\ +Async\\ +Overlapping %%%%%%%%%%%%%%%%%%%%%%%%