X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Krylov_multi.git/blobdiff_plain/87f15fb45ae134cbf1e3a43b7ffc2a19218487ee..0d162d0a192a8e0e159e831ba451862a05260ee5:/krylov_multi.tex diff --git a/krylov_multi.tex b/krylov_multi.tex index ad465ee..ea6cfe9 100644 --- a/krylov_multi.tex +++ b/krylov_multi.tex @@ -3,6 +3,15 @@ \usepackage{amsfonts,amssymb} \usepackage{amsmath} \usepackage{graphicx} +\usepackage{algorithm} +\usepackage{algpseudocode} + +\algnewcommand\algorithmicinput{\textbf{Input:}} +\algnewcommand\Input{\item[\algorithmicinput]} + +\algnewcommand\algorithmicoutput{\textbf{Output:}} +\algnewcommand\Output{\item[\algorithmicoutput]} + \title{A scalable multisplitting algorithm for solving large sparse linear systems} @@ -38,9 +47,14 @@ classical GMRES both in terms of number of iterations and execution times. Iterative methods are used to solve large sparse linear systems of equations of the form $Ax=b$ because they are easier to parallelize than direct ones. Many -iterative methods have been proposed and adapted by many researchers. When -solving large linear systems with many cores, iterative methods often suffer -from scalability problems. This is due to their need for collective +iterative methods have been proposed and adapted by many researchers. For +example, the GMRES method and the Conjugate Gradient method are very well known +and used by many researchers ~\cite{S96}. Both the method are based on the +Krylov subspace which consists in forming a basis of the sequence of successive +matrix powers times the initial residual. + +When solving large linear systems with many cores, iterative methods often +suffer from scalability problems. This is due to their need for collective communications to perform matrix-vector products and reduction operations. Preconditionners can be used in order to increase the convergence of iterative solvers. However, most of the good preconditionners are not sclalable when @@ -48,7 +62,60 @@ thousands of cores are used. A completer... -On ne peut pas parler de tout... +On ne peut pas parler de tout...\\ + + + + +%%%%%%%%%%%%%%%%%%%%%%% +%% BEGIN +%%%%%%%%%%%%%%%%%%%%%%% +The key idea of the multisplitting method for solving a large system +of linear equations $Ax=b$ consists in partitioning the matrix $A$ in +$L$ several ways +\begin{equation} +A = M_l - N_l,~l\in\{1,\ldots,L\}, +\label{eq01} +\end{equation} +where $M_l$ are nonsingular matrices. Then the linear system is solved +by iteration based on the multisplittings as follows +\begin{equation} +x^{k+1}=\displaystyle\sum^L_{l=1} E_l M^{-1}_l (N_l x^k + b),~k=1,2,3,\ldots +\label{eq02} +\end{equation} +where $E_l$ are non-negative and diagonal weighting matrices such that +$\sum^L_{l=1}E_l=I$ ($I$ is an identity matrix). Thus the convergence +of such a method is dependent on the condition +\begin{equation} +\rho(\displaystyle\sum^L_{l=1}E_l M^{-1}_l N_l)<1. +\label{eq03} +\end{equation} + +The advantage of the multisplitting method is that at each iteration +$k$ there are $L$ different linear sub-systems +\begin{equation} +v_l^k=M^{-1}_l N_l x_l^{k-1} + M^{-1}_l b,~l\in\{1,\ldots,L\}, +\label{eq04} +\end{equation} +to be solved independently by a direct or an iterative method, where +$v_l^k$ is the solution of the local sub-system. Thus, the +calculations of $v_l^k$ may be performed in parallel by a set of +processors. A multisplitting method using an iterative method for +solving the $L$ linear sub-systems is called an inner-outer iterative +method or a two-stage method. The results $v_l^k$ obtained from the +different splittings~(\ref{eq04}) are combined to compute the solution +$x^k$ of the linear system by using the diagonal weighting matrices +\begin{equation} +x^k = \displaystyle\sum^L_{l=1} E_l v_l^k, +\label{eq05} +\end{equation} +In the case where the diagonal weighting matrices $E_l$ have only zero +and one factors (i.e. $v_l^k$ are disjoint vectors), the +multisplitting method is non-overlapping and corresponds to the block +Jacobi method. +%%%%%%%%%%%%%%%%%%%%%%% +%% END +%%%%%%%%%%%%%%%%%%%%%%% \section{Related works} @@ -56,15 +123,15 @@ On ne peut pas parler de tout... A general framework for studying parallel multisplitting has been presented in \cite{o1985multi} by O'Leary and White. Convergence conditions are given for the most general case. Many authors improved multisplitting algorithms by proposing -for example a asynchronous version \cite{bru1995parallel} and convergence -condition \cite{bai1999block,bahi2000asynchronous} in this case or other -two-stage algorithms~\cite{frommer1992h,bru1995parallel} +for example an asynchronous version \cite{bru1995parallel} and convergence +conditions \cite{bai1999block,bahi2000asynchronous} in this case or other +two-stage algorithms~\cite{frommer1992h,bru1995parallel}. In \cite{huang1993krylov}, the authors proposed a parallel multisplitting algorithm in which all the tasks except one are devoted to solve a sub-block of the splitting and to send their local solution to the first task which is in charge to combine the vectors at each iteration. These vectors form a Krylov -basis for which the first tasks minimize the error function over the basis to +basis for which the first task minimizes the error function over the basis to increase the convergence, then the other tasks receive the update solution until convergence of the global system. @@ -75,9 +142,11 @@ of multisplitting algorithms that take benefit from multisplitting algorithms to solve large scale linear systems. Inner solvers could be based on scalar direct method with the LU method or scalar iterative one with GMRES. -%%%%% Lilia -% doit-on définir le principe et les préliminaires du multisplitting dans l'intro ou dans l'autre section? -% valides-tu le titre de la 2eme section? celle que je voudrai rédiger. +In~\cite{prace-multi}, the authors have proposed a parallel multisplitting +algorithm in which large block are solved using a GMRES solver. The authors have +performed large scale experimentations upto 32.768 cores and they conclude that +asynchronous multisplitting algorithm could more efficient than traditionnal +solvers on exascale architecture with hunders of thousands of cores. %%%%%%%%%%%%%%%%%%%%%%%% @@ -85,6 +154,171 @@ method with the LU method or scalar iterative one with GMRES. \section{A two-stage method with a minimization} +Let $Ax=b$ be a given sparse and large linear system of $n$ equations +to solve in parallel on $L$ clusters, physically adjacent or +geographically distant, where $A\in\mathbb{R}^{n\times n}$ is a square +and nonsingular matrix, $x\in\mathbb{R}^{n}$ is the solution vector +and $b\in\mathbb{R}^{n}$ is the right-hand side vector. The +multisplitting of this linear system is defined as follows: +\begin{equation} +\left\{ +\begin{array}{lll} +A & = & [A_{1}, \ldots, A_{L}]\\ +x & = & [X_{1}, \ldots, X_{L}]\\ +b & = & [B_{1}, \ldots, B_{L}] +\end{array} +\right. +\label{sec03:eq01} +\end{equation} +where for $l\in\{1,\ldots,L\}$, $A_l$ is a rectangular block of size +$n_l\times n$ and $X_l$ and $B_l$ are sub-vectors of size $n_l$, such +that $\sum_ln_l=n$. In this case, we use a row-by-row splitting +without overlapping in such a way that successive rows of the sparse +matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster. +So, the multisplitting format of the linear system is defined as +follows: +\begin{equation} +\forall l\in\{1,\ldots,L\} \mbox{,~} \displaystyle\sum_{i=1}^{l-1}A_{li}X_i + A_{ll}X_l + \displaystyle\sum_{i=l+1}^{L}A_{li}X_i = B_l, +\label{sec03:eq02} +\end{equation} +where $A_{li}$ is a block of size $n_l\times n_i$ of the rectangular +matrix $A_l$, $X_i\neq X_l$ is a sub-vector of size $n_i$ of the +solution vector $x$ and $\sum_{il}n_i+n_l=n$, for all +$i\in\{1,\ldots,l-1,l+1,\ldots,L\}$. + +The multisplitting method proceeds by iteration for solving the linear +system in such a way each sub-system +\begin{equation} +\left\{ +\begin{array}{l} +A_{ll}X_l = Y_l \mbox{,~such that}\\ +Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i, +\end{array} +\right. +\label{sec03:eq03} +\end{equation} +is solved independently by a cluster of processors and communication +are required to update the right-hand side vectors $Y_l$, such that +the vectors $X_i$ represent the data dependencies between the +clusters. In this work, we use the parallel GMRES method~\cite{ref34} +as an inner iteration method for solving the +sub-systems~(\ref{sec03:eq03}). It is a well-known iterative method +which gives good performances for solving sparse linear systems in +parallel on a cluster of processors. + +It should be noted that the convergence of the inner iterative solver +for the different linear sub-systems~(\ref{sec03:eq03}) does not +necessarily involve the convergence of the multisplitting method. It +strongly depends on the properties of the sparse linear system to be +solved and the computing +environment~\cite{o1985multi,ref18}. Furthermore, the multisplitting +of the linear system among several clusters of processors increases +the spectral radius of the iteration matrix, thereby slowing the +convergence. In this paper, we based on the work presented +in~\cite{huang1993krylov} to increase the convergence and improve the +scalability of the multisplitting methods. + +In order to accelerate the convergence, we implement the outer +iteration of the multisplitting solver as a Krylov subspace method +which minimizes some error function over a Krylov subspace~\cite{S96}. +The Krylov space of the method that we used is spanned by a basis +composed of successive solutions issued from solving the $L$ +splittings~(\ref{sec03:eq03}) +\begin{equation} +S=\{x^1,x^2,\ldots,x^s\},~s\leq n, +\label{sec03:eq04} +\end{equation} +where for $j\in\{1,\ldots,s\}$, $x^j=[X_1^j,\ldots,X_L^j]$ is a +solution of the global linear system. The advantage of such a Krylov subspace is that we need neither an orthogonal basis nor synchronizations between the different clusters to generate this basis. + +The multisplitting method is periodically restarted every $s$ +iterations with a new initial guess $\tilde{x}=S\alpha$ which +minimizes the error function $\|b-Ax\|_2$ over the Krylov subspace +spanned by the vectors of $S$. So, $\alpha$ is defined as the +solution of the large overdetermined linear system +\begin{equation} +R\alpha=b, +\label{sec03:eq05} +\end{equation} +where $R=AS$ is a dense rectangular matrix of size $n\times s$ and +$s\ll n$. This leads us to solve the system of normal equations +\begin{equation} +R^TR\alpha=R^Tb, +\label{sec03:eq06} +\end{equation} +which is associated with the least squares problem +\begin{equation} +\text{minimize}~\|b-R\alpha\|_2, +\label{sec03:eq07} +\end{equation} +where $R^T$ denotes the transpose of the matrix $R$. Since $R$ +(i.e. $AS$) and $b$ are split among $L$ clusters, the symmetric +positive definite system~(\ref{sec03:eq06}) is solved in +parallel. Thus, an iterative method would be more appropriate than a +direct one for solving this system. We use the parallel conjugate +gradient method for the normal equations CGNR~\cite{S96,refCGNR}. + +\begin{algorithm}[!t] +\caption{A two-stage linear solver with inner iteration GMRES method} +\begin{algorithmic}[1] +\Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess) +\Output $X_l$ (local solution vector)\vspace{0.2cm} +\State Load $A_l$, $B_l$, $x^0$ +\State Initialize the minimizer $\tilde{x}^0=x^0$ +\For {$k=1,2,3,\ldots$ until the global convergence} +\State Restart with $x^0=\tilde{x}^{k-1}$: \textbf{for} $j=1,2,\ldots,s$ \textbf{do} +\State\hspace{0.5cm} Inner iteration solver: \Call{InnerSolver}{$x^0$, $j$} +\State\hspace{0.5cm} Construct the basis $S$: add the column vector $X_l^j$ to the matrix $S_l^k$ +\State\hspace{0.5cm} Exchange the local solution vector $X_l^j$ with the neighboring clusters +\State\hspace{0.5cm} Compute the dense matrix $R$: $R_l^{k,j}=\sum^L_{i=1}A_{li}X_i^j$ +\State\textbf{end for} +\State Minimization $\|b-R\alpha\|_2$: \Call{UpdateMinimizer}{$S_l$, $R$, $b$, $k$} +\State Local solution of the linear system $Ax=b$: $X_l^k=\tilde{X}_l^k$ +\State Exchange the local minimizer $\tilde{X}_l^k$ with the neighboring clusters +\EndFor + +\Statex + +\Function {InnerSolver}{$x^0$, $j$} +\State Compute the local right-hand side: $Y_l = B_l - \sum^L_{i=1,i\neq l}A_{li}X_i^0$ +\State Solving the local splitting $A_{ll}X_l^j=Y_l$ using the parallel GMRES method, such that $X_l^0$ is the initial guess +\State \Return $X_l^j$ +\EndFunction + +\Statex + +\Function {UpdateMinimizer}{$S_l$, $R$, $b$, $k$} +\State Solving the normal equations $(R^k)^TR^k\alpha^k=(R^k)^Tb$ in parallel by $L$ clusters using the parallel CGNR method +\State Compute the local minimizer: $\tilde{X}_l^k=S_l^k\alpha^k$ +\State \Return $\tilde{X}_l^k$ +\EndFunction +\end{algorithmic} +\label{algo:01} +\end{algorithm} + +The main key points of the multisplitting method for solving large +sparse linear systems are given in Algorithm~\ref{algo:01}. This +algorithm is based on a two-stage method with a minimization using the +GMRES iterative method as an inner solver. It is executed in parallel +by each cluster of processors. The matrices and vectors with the +subscript $l$ represent the local data for the cluster $l$, where +$l\in\{1,\ldots,L\}$. The two-stage solver uses two different parallel +iterative algorithms: the GMRES method for solving each splitting on a +cluster of processors, and the CGNR method executed in parallel by all +clusters for minimizing the function error over the Krylov subspace +spanned by $S$. The algorithm requires two global synchronizations +between the $L$ clusters. The first one is performed at line~$12$ in +Algorithm~\ref{algo:01} to exchange the local values of the vector +solution $x$ (i.e. the minimizer $\tilde{x}$) required to restart the +multisplitting solver. The second one is needed to construct the +matrix $R$ of the Krylov subspace. We choose to perform this latter +synchronization $s$ times in every outer iteration $k$ (line~$7$ in +Algorithm~\ref{algo:01}). This is a straightforward way to compute the +matrix-matrix multiplication $R=AS$. We implement all +synchronizations by using the MPI collective communication +subroutines. + + %%%%%%%%%%%%%%%%%%%%%%%%