X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Krylov_multi.git/blobdiff_plain/87f15fb45ae134cbf1e3a43b7ffc2a19218487ee..3933b25f95c0d8f65bfd2778425ac43c3ed67f20:/krylov_multi.tex?ds=sidebyside diff --git a/krylov_multi.tex b/krylov_multi.tex index ad465ee..48d9e2e 100644 --- a/krylov_multi.tex +++ b/krylov_multi.tex @@ -38,9 +38,14 @@ classical GMRES both in terms of number of iterations and execution times. Iterative methods are used to solve large sparse linear systems of equations of the form $Ax=b$ because they are easier to parallelize than direct ones. Many -iterative methods have been proposed and adapted by many researchers. When -solving large linear systems with many cores, iterative methods often suffer -from scalability problems. This is due to their need for collective +iterative methods have been proposed and adapted by many researchers. For +example, the GMRES method and the Conjugate Gradient method are very well known +and used by many researchers ~\cite{S96}. Both the method are based on the +Krylov subspace which consists in forming a basis of the sequence of successive +matrix powers times the initial residual. + +When solving large linear systems with many cores, iterative methods often +suffer from scalability problems. This is due to their need for collective communications to perform matrix-vector products and reduction operations. Preconditionners can be used in order to increase the convergence of iterative solvers. However, most of the good preconditionners are not sclalable when @@ -48,7 +53,60 @@ thousands of cores are used. A completer... -On ne peut pas parler de tout... +On ne peut pas parler de tout...\\ + + + + +%%%%%%%%%%%%%%%%%%%%%%% +%% BEGIN +%%%%%%%%%%%%%%%%%%%%%%% +The key idea of the multisplitting method for solving a large system +of linear equations $Ax=b$ consists in partitioning the matrix $A$ in +$L$ several ways +\begin{equation} +A = M_l - N_l,~l\in\{1,\ldots,L\}, +\label{eq01} +\end{equation} +where $M_l$ are nonsingular matrices. Then the linear system is solved +by iteration based on the multisplittings as follows +\begin{equation} +x^{k+1}=\displaystyle\sum^L_{l=1} E_l M^{-1}_l (N_l x^k + b),~k=1,2,3,\ldots +\label{eq02} +\end{equation} +where $E_l$ are non-negative and diagonal weighting matrices such that +$\sum^L_{l=1}E_l=I$ ($I$ is an identity matrix). Thus the convergence +of such a method is dependent on the condition +\begin{equation} +\rho(\displaystyle\sum^L_{l=1}E_l M^{-1}_l N_l)<1. +\label{eq03} +\end{equation} + +The advantage of the multisplitting method is that at each iteration +$k$ there are $L$ different linear sub-systems +\begin{equation} +v_l^k=M^{-1}_l N_l x_l^{k-1} + M^{-1}_l b,~l\in\{1,\ldots,L\}, +\label{eq04} +\end{equation} +to be solved independently by a direct or an iterative method, where +$v_l^k$ is the solution of the local sub-system. Thus, the +calculations of $v_l^k$ may be performed in parallel by a set of +processors. A multisplitting method using an iterative method for +solving the $L$ linear sub-systems is called an inner-outer iterative +method or a two-stage method. The results $v_l^k$ obtained from the +different splittings~(\ref{eq04}) are combined to compute the solution +$x^k$ of the linear system by using the diagonal weighting matrices +\begin{equation} +x^k = \displaystyle\sum^L_{l=1} E_l v_l^k, +\label{eq05} +\end{equation} +In the case where the diagonal weighting matrices $E_l$ have only zero +and one factors (i.e. $v_l^k$ are disjoint vectors), the +multisplitting method is non-overlapping and corresponds to the block +Jacobi method. +%%%%%%%%%%%%%%%%%%%%%%% +%% END +%%%%%%%%%%%%%%%%%%%%%%% \section{Related works} @@ -56,15 +114,15 @@ On ne peut pas parler de tout... A general framework for studying parallel multisplitting has been presented in \cite{o1985multi} by O'Leary and White. Convergence conditions are given for the most general case. Many authors improved multisplitting algorithms by proposing -for example a asynchronous version \cite{bru1995parallel} and convergence -condition \cite{bai1999block,bahi2000asynchronous} in this case or other -two-stage algorithms~\cite{frommer1992h,bru1995parallel} +for example an asynchronous version \cite{bru1995parallel} and convergence +conditions \cite{bai1999block,bahi2000asynchronous} in this case or other +two-stage algorithms~\cite{frommer1992h,bru1995parallel}. In \cite{huang1993krylov}, the authors proposed a parallel multisplitting algorithm in which all the tasks except one are devoted to solve a sub-block of the splitting and to send their local solution to the first task which is in charge to combine the vectors at each iteration. These vectors form a Krylov -basis for which the first tasks minimize the error function over the basis to +basis for which the first task minimizes the error function over the basis to increase the convergence, then the other tasks receive the update solution until convergence of the global system. @@ -75,9 +133,11 @@ of multisplitting algorithms that take benefit from multisplitting algorithms to solve large scale linear systems. Inner solvers could be based on scalar direct method with the LU method or scalar iterative one with GMRES. -%%%%% Lilia -% doit-on définir le principe et les préliminaires du multisplitting dans l'intro ou dans l'autre section? -% valides-tu le titre de la 2eme section? celle que je voudrai rédiger. +In~\cite{prace-multi}, the authors have proposed a parallel multisplitting +algorithm in which large block are solved using a GMRES solver. The authors have +performed large scale experimentations upto 32.768 cores and they conclude that +asynchronous multisplitting algorithm could more efficient than traditionnal +solvers on exascale architecture with hunders of thousands of cores. %%%%%%%%%%%%%%%%%%%%%%%% @@ -85,6 +145,56 @@ method with the LU method or scalar iterative one with GMRES. \section{A two-stage method with a minimization} +Let $Ax=b$ be a given sparse and large linear system of $n$ equations +to solve in parallel on $L$ clusters, physically adjacent or geographically +distant, where $A\in\mathbb{R}^{n\times n}$ is a square and nonsingular +matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$ +is the right-hand side vector. The multisplitting of this linear system +is defined as follows: +\begin{equation} +\left\{ +\begin{array}{lll} +A & = & [A_{1}, \ldots, A_{L}]\\ +x & = & [X_{1}, \ldots, X_{L}]\\ +b & = & [B_{1}, \ldots, B_{L}] +\end{array} +\right. +\label{sec03:eq01} +\end{equation} +where for $l\in\{1,\ldots,L\}$ $A_l$ is a rectangular block of size $n_l\times n$ +and $X_l$ and $B_l$ are sub-vectors of size $n_l$, such that $\sum_ln_l=n$. In this +case, we use a row-by-row splitting without overlapping in such a way that successive +rows of the sparse matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster. +So, the multisplitting format of the linear system is defined as follows: +\begin{equation} +\forall l\in\{1,\ldots,L\} \mbox{,~} \displaystyle\sum_{i=1}^{l-1}A_{li}X_i + A_{ll}X_l + \displaystyle\sum_{i=l+1}^{L}A_{li}X_i = B_l, +\label{sec03:eq02} +\end{equation} +where $A_{li}$ is a block of size $n_l\times n_i$ of the rectangular matrix $A_l$, $X_i\neq X_l$ +is a sub-vector of size $n_i$ of the solution vector $x$ and $\sum_{il}n_i+n_l=n$, +for all $i\in\{1,\ldots,l-1,l+1,\ldots,L\}$. + +The multisplitting method proceeds by iteration for solving the linear system in such a +way each sub-system +\begin{equation} +\left\{ +\begin{array}{l} +A_{ll}X_l = Y_l \mbox{,~such that}\\ +Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i, +\end{array} +\right. +\label{sec03:eq03} +\end{equation} +is solved independently by a cluster of processors and communication are required to +update the right-hand side vectors $Y_l$, such that the vectors $X_i$ represent the data +dependencies between the clusters. In this work, we use the GMRES method as an inner +iteration method for solving the sub-systems~(\ref{sec03:eq03}). It is a well-known +iterative method which gives good performances for solving sparse linear systems in +parallel on a cluster of processors. + + + + %%%%%%%%%%%%%%%%%%%%%%%%