X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Krylov_multi.git/blobdiff_plain/ee6ff2cef0b50051cbcf657aa4f3fc61bc050472..5e3a7342021a720e17be4f147b4e73e5ad5396b9:/krylov_multi.tex diff --git a/krylov_multi.tex b/krylov_multi.tex index 963ce3e..91e4745 100644 --- a/krylov_multi.tex +++ b/krylov_multi.tex @@ -38,9 +38,14 @@ classical GMRES both in terms of number of iterations and execution times. Iterative methods are used to solve large sparse linear systems of equations of the form $Ax=b$ because they are easier to parallelize than direct ones. Many -iterative methods have been proposed and adapted by many researchers. When -solving large linear systems with many cores, iterative methods often suffer -from scalability problems. This is due to their need for collective +iterative methods have been proposed and adapted by many researchers. For +example, the GMRES method and the Conjugate Gradient method are very well known +and used by many researchers ~\cite{S96}. Both the method are based on the +Krylov subspace which consists in forming a basis of the sequence of successive +matrix powers times the initial residual. + +When solving large linear systems with many cores, iterative methods often +suffer from scalability problems. This is due to their need for collective communications to perform matrix-vector products and reduction operations. Preconditionners can be used in order to increase the convergence of iterative solvers. However, most of the good preconditionners are not sclalable when @@ -108,15 +113,15 @@ Jacobi method. A general framework for studying parallel multisplitting has been presented in \cite{o1985multi} by O'Leary and White. Convergence conditions are given for the most general case. Many authors improved multisplitting algorithms by proposing -for example a asynchronous version \cite{bru1995parallel} and convergence -condition \cite{bai1999block,bahi2000asynchronous} in this case or other -two-stage algorithms~\cite{frommer1992h,bru1995parallel} +for example an asynchronous version \cite{bru1995parallel} and convergence +conditions \cite{bai1999block,bahi2000asynchronous} in this case or other +two-stage algorithms~\cite{frommer1992h,bru1995parallel}. In \cite{huang1993krylov}, the authors proposed a parallel multisplitting algorithm in which all the tasks except one are devoted to solve a sub-block of the splitting and to send their local solution to the first task which is in charge to combine the vectors at each iteration. These vectors form a Krylov -basis for which the first tasks minimize the error function over the basis to +basis for which the first task minimizes the error function over the basis to increase the convergence, then the other tasks receive the update solution until convergence of the global system. @@ -127,7 +132,11 @@ of multisplitting algorithms that take benefit from multisplitting algorithms to solve large scale linear systems. Inner solvers could be based on scalar direct method with the LU method or scalar iterative one with GMRES. - +In~\cite{prace-multi}, the authors have proposed a parallel multisplitting +algorithm in which large block are solved using a GMRES solver. The authors have +performed large scale experimentations upto 32.768 cores and they conclude that +asynchronous multisplitting algorithm could more efficient than traditionnal +solvers on exascale architecture with hunders of thousands of cores. %%%%%%%%%%%%%%%%%%%%%%%%