X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Krylov_multi.git/blobdiff_plain/f4a01eb8e780198f12449d8cd627edfb2bf8f0b9..5c46b6af2c3ea13c1e1521db819fc1cf0da0cf08:/krylov_multi.tex?ds=sidebyside diff --git a/krylov_multi.tex b/krylov_multi.tex index 5a73670..5715dc2 100644 --- a/krylov_multi.tex +++ b/krylov_multi.tex @@ -38,7 +38,7 @@ \begin{abstract} In this paper we revisit the Krylov multisplitting algorithm presented in -\cite{huang1993krylov} which uses a scalar method to minimize the Krylov +\cite{huang1993krylov} which uses a sequential method to minimize the Krylov iterations computed by a multisplitting algorithm. Our new algorithm is based on a parallel multisplitting algorithm with few blocks of large size using a parallel GMRES method inside each block and on a parallel Krylov minimization in @@ -97,7 +97,7 @@ convergence of the global system. In~\cite{couturier2008gremlins}, the authors proposed practical implementations of multisplitting algorithms to solve large scale linear systems. Inner solvers -could be based on scalar direct method with the LU method or scalar iterative +could be based on sequential direct method with the LU method or sequential iterative one with GMRES. In~\cite{prace-multi}, the authors have proposed a parallel multisplitting