X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Krylov_multi.git/blobdiff_plain/fb4f940596c23f99b2afaf01ae434613e19a9fd8..1a82aaffa07c2cd0cd044d1454d233171075e6f2:/krylov_multi.tex?ds=sidebyside diff --git a/krylov_multi.tex b/krylov_multi.tex index e184f24..3295c82 100644 --- a/krylov_multi.tex +++ b/krylov_multi.tex @@ -48,7 +48,52 @@ thousands of cores are used. A completer... -On ne peut pas parler de tout... +On ne peut pas parler de tout...\\ + + + + +%%%%%%%%%%%%%%%%%%%%%%% +%% BEGIN +%%%%%%%%%%%%%%%%%%%%%%% +The key idea of the multisplitting method for solving a large system of linear equations +$Ax=b$ consists in partitioning the matrix $A$ in $L$ several ways +\begin{equation} +A = M_l - N_l,~l\in\{1,\ldots,L\}, +\label{eq01} +\end{equation} +where $M_l$ are nonsingular matrices. Then the linear system is solved by iteration based +on the multisplittings as follows +\begin{equation} +x^{k+1}=\displaystyle\sum^L_{l=1} E_l M^{-1}_l (N_l x^k + b),~k=1,2,3,\ldots +\label{eq02} +\end{equation} +where $E_l$ are non-negative and diagonal weighting matrices such that $\sum^L_{l=1}E_l=I$ ($I$ is an identity matrix). +Thus the convergence of such a method is dependent on the condition +\begin{equation} +\rho(\displaystyle\sum^L_{l=1}E_l M^{-1}_l N_l)<1. +\label{eq03} +\end{equation} + +The advantage of the multisplitting method is that at each iteration $k$ there are $L$ different linear +systems +\begin{equation} +y_l^k=M^{-1}_l N_l x_l^{k-1} + M^{-1}_l b,~l\in\{1,\ldots,L\}, +\label{eq04} +\end{equation} +to be solved independently by a direct or an iterative method, where $y_l^k$ is the solution of the local system. +A multisplitting method using an iterative method for solving the $L$ linear systems is called an inner-outer +iterative method or a two-stage method. The solution of the global linear system at the iteration $k$ is computed +as follows +\begin{equation} +x^k = \displaystyle\sum^L_{l=1} E_l y_l^k, +\label{eq05} +\end{equation} +In the case where the diagonal weighting matrices $E_l$ have only zero and one factors (i.e. $y_l^k$ are disjoint vectors), +the multisplitting method is non-overlapping and corresponds to the block Jacobi method. +%%%%%%%%%%%%%%%%%%%%%%% +%% END +%%%%%%%%%%%%%%%%%%%%%%% \section{Related works} @@ -83,6 +128,46 @@ method with the LU method or scalar iterative one with GMRES. \section{A two-stage method with a minimization} +Let $Ax=b$ be a given sparse and large linear system of $n$ equations +to solve in parallel on $L$ clusters, physically adjacent or geographically +distant, where $A\in\mathbb{R}^{n\times n}$ is a square and nonsingular +matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$ +is the right-hand side vector. The multisplitting of this linear system +is defined as follows: +\begin{equation} +\left\{ +\begin{array}{lll} +A & = & [A_{1}, \ldots, A_{L}]\\ +x & = & [X_{1}, \ldots, X_{L}]\\ +b & = & [B_{1}, \ldots, B_{L}] +\end{array} +\right. +\label{sec03:eq01} +\end{equation} +where for all $l\in\{1,\ldots,L\}$ $A_l$ is a rectangular block of size $n_l\times n$ +and $X_l$ and $B_l$ are sub-vectors of size $n_l$, such that $\sum_ln_l=n$. In this +case, we use a row-by-row splitting without overlapping in such a way that successive +rows of the sparse matrix $A$ and both vectors $x$ and $b$ are assigned to one cluster. +So, the multisplitting format of the linear system is defined as follows: +\begin{equation} +\forall l\in\{1,\ldots,L\} \mbox{,~} \displaystyle\sum_{i=1}^{l-1}A_{li}X_i + A_{ll}X_l + \displaystyle\sum_{i=l+1}^{L}A_{li}X_i = B_l, +\label{sec03:eq02} +\end{equation} +where $A_{li}$ is a block of size $n_l\times n_i$ of the rectangular matrix $A_l$, $X_i\neq X_l$ +is a sub-vector of size $n_i$ of the solution vector $x$ and $\sum_{il}n_i+n_l=n$, +for all $i\in\{1,\ldots,l-1,l+1,\ldots,L\}$. Therefore, each cluster $l$ is in charge of solving +the following spare sub-linear system: +\begin{equation} +\left\{ +\begin{array}{l} +A_{ll}X_l = Y_l \mbox{,~such that}\\ +Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i, +\end{array} +\right. +\label{sec03:eq03} +\end{equation} +where the sub-vectors $X_i$ define the data dependencies between the cluster $l$ and other clusters. + %%%%%%%%%%%%%%%%%%%%%%%%