From: lilia Date: Sun, 5 Jan 2014 22:04:04 +0000 (+0100) Subject: 05-01-2013 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Krylov_multi.git/commitdiff_plain/23d19900771651bd580496ebc8ca0fc156aedc88 05-01-2013 --- diff --git a/krylov_multi.tex b/krylov_multi.tex index e184f24..82cf45e 100644 --- a/krylov_multi.tex +++ b/krylov_multi.tex @@ -83,6 +83,46 @@ method with the LU method or scalar iterative one with GMRES. \section{A two-stage method with a minimization} +Let $Ax=b$ be a given sparse and large linear system of $n$ equations +to solve in parallel on $L$ clusters, physically adjacent or geographically +distant, where $A\in\mathbb{R}^{n\times n}$ is a square and nonsingular +matrix, $x\in\mathbb{R}^{n}$ is the solution vector and $b\in\mathbb{R}^{n}$ +is the right-hand side vector. The multisplitting of this linear system +is defined as follows: +\begin{equation} +\left\{ +\begin{array}{lll} +A & = & [A_{1}, \ldots, A_{L}]\\ +x & = & [X_{1}, \ldots, X_{L}]\\ +b & = & [B_{1}, \ldots, B_{L}] +\end{array} +\right. +\label{sec03:eq01} +\end{equation} +where for all $l\in\{1,\ldots,L\}$ $A_l$ is a rectangular block of size $n_l\times n$ +and $X_l$ and $B_l$ are sub-vectors of size $n_l$, such that $\sum_ln_l=n$. In this +case, we use a row-by-row splitting without overlapping in such a way that successive +rows of the sparse matrix $A$ and both vectors $x$ and $b$ are assigned to a cluster. +So, the multisplitting format of the linear system is defined as follows: +\begin{equation} +\forall l\in\{1,\ldots,L\} \mbox{,~} \displaystyle\sum_{i=1}^{l-1}A_{li}X_i + A_{ll}X_l + \displaystyle\sum_{i=l+1}^{L}A_{li}X_i = B_l, +\label{sec03:eq02} +\end{equation} +where $A_{li}$ is a block of size $n_l\times n_i$ of the rectangular matrix $A_l$, $X_i\neq X_l$ +is a sub-vector of size $n_i$ of the solution vector $x$ and $\sum_{il}n_i+n_l=n$, +for all $i\in\{1,\ldots,l-1,l+1,\ldots,L\}$. Therefore, each cluster $l$ is in charge of solving +the following spare sub-linear system: +\begin{equation} +\left\{ +\begin{array}{l} +A_{ll}X_l = Y_l \mbox{,~such that}\\ +Y_l = B_l - \displaystyle\sum_{i=1,i\neq l}^{L}A_{li}X_i, +\end{array} +\right. +\label{sec03:eq03} +\end{equation} +where the sub-vectors $X_i$ define the data dependencies between the cluster $l$ and other clusters. + %%%%%%%%%%%%%%%%%%%%%%%%