From 0d162d0a192a8e0e159e831ba451862a05260ee5 Mon Sep 17 00:00:00 2001 From: lilia Date: Mon, 13 Jan 2014 14:25:34 +0100 Subject: [PATCH 1/1] 13-01-2014 V1 --- krylov_multi.tex | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/krylov_multi.tex b/krylov_multi.tex index 1010f07..ea6cfe9 100644 --- a/krylov_multi.tex +++ b/krylov_multi.tex @@ -6,6 +6,12 @@ \usepackage{algorithm} \usepackage{algpseudocode} +\algnewcommand\algorithmicinput{\textbf{Input:}} +\algnewcommand\Input{\item[\algorithmicinput]} + +\algnewcommand\algorithmicoutput{\textbf{Output:}} +\algnewcommand\Output{\item[\algorithmicoutput]} + \title{A scalable multisplitting algorithm for solving large sparse linear systems} @@ -255,7 +261,9 @@ gradient method for the normal equations CGNR~\cite{S96,refCGNR}. \begin{algorithm}[!t] \caption{A two-stage linear solver with inner iteration GMRES method} \begin{algorithmic}[1] -\State Load $A_l$, $B_l$, initial guess $x^0$ +\Input $A_l$ (local sparse matrix), $B_l$ (local right-hand side), $x^0$ (initial guess) +\Output $X_l$ (local solution vector)\vspace{0.2cm} +\State Load $A_l$, $B_l$, $x^0$ \State Initialize the minimizer $\tilde{x}^0=x^0$ \For {$k=1,2,3,\ldots$ until the global convergence} \State Restart with $x^0=\tilde{x}^{k-1}$: \textbf{for} $j=1,2,\ldots,s$ \textbf{do} -- 2.39.5