]> AND Private Git Repository - LiCO.git/blob - PeCO-EO/articleeo.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ba033eade1f6110f75bcbbc98e30998e98f55d93
[LiCO.git] / PeCO-EO / articleeo.tex
1 % gENOguide.tex
2 % v4.0 released April 2013
3
4 \documentclass{gENO2e}
5 %\usepackage[linesnumbered,ruled,vlined,commentsnumbered]{algorithm2e}
6 %\renewcommand{\algorithmcfname}{ALGORITHM}
7 \usepackage{indentfirst}
8 \usepackage[algo2e,ruled,vlined]{algorithm2e}
9 \begin{document}
10
11 %\jvol{00} \jnum{00} \jyear{2013} \jmonth{April}
12
13 %\articletype{GUIDE}
14
15 \title{{\itshape Perimeter-based Coverage Optimization to Improve Lifetime \\
16     in Wireless Sensor Networks}}
17
18 \author{Ali Kadhum Idrees$^{a, b}$, Karine Deschinkel$^{a}$$^{\ast}$\thanks{$^\ast$Corresponding author. Email: karine.deschinkel@univ-fcomte.fr}, Michel Salomon$^{a}$ and Rapha\"el Couturier $^{a}$
19 $^{a}${\em{FEMTO-ST Institute, UMR 6174 CNRS, University of Franche-Comt\'e,
20           Belfort, France}}
21 $^{b}${\em{Department of Computer Science, University of Babylon, Babylon, Iraq}} }         
22           
23         
24
25 \maketitle
26
27 \begin{abstract}
28 The most important problem in a Wireless Sensor Network (WSN) is to optimize the
29 use of its limited energy provision, so  that it can fulfill its monitoring task
30 as  long as  possible. Among  known  available approaches  that can  be used  to
31 improve  power  management,  lifetime coverage  optimization  provides  activity
32 scheduling which ensures  sensing coverage while minimizing the  energy cost. We
33 propose such  an approach called Perimeter-based  Coverage Optimization protocol
34 (PeCO). It  is a hybrid  of centralized and  distributed methods: the  region of
35 interest  is  first  subdivided  into   subregions  and  the  protocol  is  then
36 distributed among sensor  nodes in each subregion.  The novelty  of our approach
37 lies essentially  in the  formulation of a  new mathematical  optimization model
38 based  on  the  perimeter  coverage   level  to  schedule  sensors'  activities.
39 Extensive simulation experiments demonstrate that PeCO can offer longer lifetime
40 coverage for WSNs in comparison with some other protocols.
41
42 \begin{keywords}
43   Wireless Sensor Networks, Area Coverage, Energy efficiency, Optimization, Scheduling.
44 \end{keywords}
45
46 \end{abstract}
47
48 \section{Introduction}
49 \label{sec:introduction}
50
51 The continuous progress in Micro  Electro-Mechanical Systems (MEMS) and wireless
52 communication hardware has  given rise to the opportunity to  use large networks
53 of      tiny       sensors,      called      Wireless       Sensor      Networks
54 (WSN)~\citep{akyildiz2002wireless,puccinelli2005wireless}, to fulfill monitoring
55 tasks.   A  WSN  consists  of  small low-powered  sensors  working  together  by
56 communicating with one another through multi-hop radio communications. Each node
57 can send the data  it collects in its environment, thanks to  its sensor, to the
58 user by means of  sink nodes. The features of a WSN made  it suitable for a wide
59 range of application  in areas such as business,  environment, health, industry,
60 military, and so on~\citep{yick2008wireless}.  Typically, a sensor node contains
61 three main components~\citep{anastasi2009energy}: a sensing unit able to measure
62 physical,  chemical, or  biological  phenomena observed  in  the environment;  a
63 processing unit which will process and store the collected measurements; a radio
64 communication unit for data transmission and receiving.
65
66 The energy needed  by an active sensor node to  perform sensing, processing, and
67 communication is supplied by a power supply which is a battery. This battery has
68 a limited energy provision and it may  be unsuitable or impossible to replace or
69 recharge it in  most applications. Therefore it is necessary  to deploy WSN with
70 high density  in order to  increase reliability  and to exploit  node redundancy
71 thanks to energy-efficient activity  scheduling approaches.  Indeed, the overlap
72 of sensing  areas can be exploited  to schedule alternatively some  sensors in a
73 low power sleep mode and thus save  energy. Overall, the main question that must
74 be answered is: how to extend the lifetime coverage of a WSN as long as possible
75 while  ensuring  a   high  level  of  coverage?   These  past   few  years  many
76 energy-efficient mechanisms have been suggested  to retain energy and extend the
77 lifetime of the WSNs~\citep{rault2014energy}.
78
79 This paper makes the following contributions.
80 \begin{enumerate}
81 \item A  framework is devised  to schedule  nodes to be  activated alternatively
82   such that  the network  lifetime is  prolonged while  ensuring that  a certain
83   level of coverage  is preserved.  A key  idea in the proposed  framework is to
84   exploit  spatial and  temporal  subdivision.  On  the one  hand,  the area  of
85   interest is  divided into several smaller  subregions and, on the  other hand,
86   the time line is divided into periods  of equal length.  In each subregion the
87   sensor nodes  will cooperatively  choose a leader  which will  schedule nodes'
88   activities,  and  this grouping  of  sensors  is  similar to  typical  cluster
89   architecture.
90 \item A new  mathematical optimization model is proposed.  Instead  of trying to
91   cover a set of specified points/targets as  in most of the methods proposed in
92   the literature, we formulate an integer program based on perimeter coverage of
93   each sensor.  The  model involves integer variables to  capture the deviations
94   between  the actual  level  of coverage  and the  required  level.  Hence,  an
95   optimal  schedule will  be  obtained by  minimizing a  weighted  sum of  these
96   deviations.
97 \item Extensive  simulation experiments are  conducted using the  discrete event
98   simulator  OMNeT++, to  demonstrate the  efficiency of  our protocol.  We have
99   compared  the  PeCO  protocol  to  two approaches  found  in  the  literature:
100   DESK~\citep{ChinhVu} and GAF~\citep{xu2001geography}, and also to our previous
101   protocol DiLCO published in~\citep{Idrees2}. DiLCO  uses the same framework as
102   PeCO but is based on another optimization model for sensor scheduling.
103 \end{enumerate}
104
105 The rest of the paper is organized as follows.  In the next section some related
106 work in the  field is reviewed. Section~\ref{sec:The  PeCO Protocol Description}
107 is devoted to the PeCO protocol  description and Section~\ref{cp} focuses on the
108 coverage model  formulation which is used  to schedule the activation  of sensor
109 nodes.  Section~\ref{sec:Simulation  Results and Analysis}  presents simulations
110 results and discusses the comparison  with other approaches. Finally, concluding
111 remarks  are  drawn  and  some  suggestions   are  given  for  future  works  in
112 Section~\ref{sec:Conclusion and Future Works}.
113
114 \section{Related Literature}
115 \label{sec:Literature Review}
116
117 This section  summarizes some related  works regarding the coverage  problem and
118 presents  specific aspects  of the  PeCO protocol  common with  other literature
119 works.
120
121 The most  discussed coverage problems in  literature can be classified  in three
122 categories~\citep{li2013survey}   according  to   their  respective   monitoring
123 objective.  Hence, area  coverage \citep{Misra} means that every  point inside a
124 fixed area must be monitored, while target coverage~\citep{yang2014novel} refers
125 to  the objective  of coverage  for a  finite number  of discrete  points called
126 targets,   and   barrier  coverage~\citep{HeShibo,kim2013maximum}   focuses   on
127 preventing  intruders   from  entering   into  the   region  of   interest.   In
128 \citep{Deng2012} authors  transform the  area coverage  problem into  the target
129 coverage one taking into account the  intersection points among disks of sensors
130 nodes    or   between    disk   of    sensor   nodes    and   boundaries.     In
131 \citep{Huang:2003:CPW:941350.941367}  authors prove  that if  the perimeters  of
132 sensors are sufficiently  covered it will be  the case for the  whole area. They
133 provide an algorithm in $O(nd~log~d)$  time to compute the perimeter-coverage of
134 each sensor. $d$ denotes  the maximum number of sensors that  are neighbors to a
135 sensor, and  $n$ is the  total number  of sensors in  the network. {\it  In PeCO
136   protocol, instead  of determining the level  of coverage of a  set of discrete
137   points, our optimization model is  based on checking the perimeter-coverage of
138   each sensor to activate a minimal number of sensors.}
139
140 The major  approach to extend network  lifetime while preserving coverage  is to
141 divide/organize the  sensors into a suitable  number of set covers  (disjoint or
142 non-disjoint)  \citep{wang2011coverage},  where  each set  completely  covers  a
143 region of interest,  and to activate these set covers  successively. The network
144 activity can be planned in advance and scheduled for the entire network lifetime
145 or organized  in periods,  and the  set of  active sensor  nodes decided  at the
146 beginning of each  period \citep{ling2009energy}. In fact,  many authors propose
147 algorithms       working       in       such      a       periodic       fashion
148 \citep{chin2007,yan2008design,pc10}.  Active node  selection is determined based
149 on  the problem  requirements  (e.g.  area  monitoring,  connectivity, or  power
150 efficiency).  For instance, \citet{jaggi2006}  address the problem of maximizing
151 the lifetime  by dividing sensors  into the  maximum number of  disjoint subsets
152 such  that each  subset  can ensure  both coverage  and  connectivity. A  greedy
153 algorithm  is applied  once to  solve  this problem  and the  computed sets  are
154 activated in succession to achieve  the desired network lifetime. {\it Motivated
155   by these works,  PeCO protocol works in periods, where  each period contains a
156   preliminary  phase  for information  exchange  and  decisions, followed  by  a
157   sensing phase where one cover set is in charge of the sensing task.}
158
159 Various centralized  and distributed approaches, or  even a mixing of  these two
160 concepts,    have   been    proposed    to   extend    the   network    lifetime
161 \citep{zhou2009variable}.                      In                    distributed
162 algorithms~\citep{ChinhVu,qu2013distributed,yangnovel}  each  sensor decides  of
163 its own  activity scheduling after  an information exchange with  its neighbors.
164 The main interest of such an approach  is to avoid long range communications and
165 thus to reduce the energy dedicated to the communications.  Unfortunately, since
166 each node has  only information on its immediate neighbors  (usually the one-hop
167 ones)  it may  make a  bad  decision leading  to a  global suboptimal  solution.
168 Conversely,                                                          centralized
169 algorithms~\citep{cardei2005improving,zorbas2010solving,pujari2011high}   always
170 provide nearly  or close to  optimal solution since  the algorithm has  a global
171 view of the whole network. The disadvantage of a centralized method is obviously
172 its high cost  in communications needed to  transmit to a single  node, the base
173 station which will globally schedule nodes'  activities, data from all the other
174 sensor nodes in  the area.  The price  in communications can be  huge since long
175 range communications will be needed. In fact  the larger the WSN, the higher the
176 communication  energy  cost.  {\it  In  order  to  be suitable  for  large-scale
177   networks,  in PeCO  protocol  the area  of interest  is  divided into  several
178   smaller subregions, and in each one, a  node called the leader is in charge of
179   selecting the  active sensors for the  current period.  Thus PeCO  protocol is
180   scalable and a globally distributed method,  whereas it is centralized in each
181   subregion.}
182
183 Various coverage scheduling algorithms have been developed these past few years.
184 Many of  them, dealing with  the maximization of the  number of cover  sets, are
185 heuristics.   These  heuristics involve  the  construction  of  a cover  set  by
186 including in priority the sensor nodes  which cover critical targets, that is to
187 say   targets   that  are   covered   by   the   smallest  number   of   sensors
188 \citep{berman04,zorbas2010solving}.  Other approaches  are based on mathematical
189 programming
190 formulations~\citep{cardei2005energy,5714480,pujari2011high,Yang2014}        and
191 dedicated  techniques (solving  with a  branch-and-bound algorithm  available in
192 optimization  solver).  The  problem is  formulated as  an optimization  problem
193 (maximization of the lifetime or number of cover sets) under target coverage and
194 energy  constraints.   Column  generation   techniques,  well-known  and  widely
195 practiced techniques for  solving linear programs with too  many variables, have
196 also                                                                        been
197 used~\citep{castano2013column,doi:10.1080/0305215X.2012.687732,deschinkel2012column}.
198 {\it In  the PeCO  protocol, each leader,  in charge of  a subregion,  solves an
199   integer program which  has a twofold objective: minimize  the overcoverage and
200   the undercoverage of the perimeter of each sensor.}
201
202 The  authors   in  \citep{Idrees2}  propose  a   Distributed  Lifetime  Coverage
203 Optimization (DiLCO)  protocol, which  maintains the  coverage and  improves the
204 lifetime  in WSNs.   It is  an  improved version  of a  research work  presented
205 in~\citep{idrees2014coverage}.  First, the area  of interest is partitioned into
206 subregions using a divide-and-conquer method. DiLCO protocol is then distributed
207 on the  sensor nodes  in each  subregion in  a second  step. Hence this protocol
208 combines two  techniques: a leader  election in  each subregion, followed  by an
209 optimization-based   node  activity   scheduling  performed   by  each   elected
210 leader. The proposed DiLCO protocol is  a periodic protocol where each period is
211 decomposed into 4  phases: information exchange, leader  election, decision, and
212 sensing. The  simulations show that DiLCO  is able to increase  the WSN lifetime
213 and provides  improved coverage performance.  {\it  In the PeCO protocol,  a new
214   mathematical optimization model is proposed. Instead  of trying to cover a set
215   of  specified points/targets  as in  DiLCO protocol,  we formulate  an integer
216   program based on perimeter coverage of each sensor. The model involves integer
217   variables to capture  the deviations between the actual level  of coverage and
218   the required level. The idea is that an optimal scheduling will be obtained by
219   minimizing a weighted sum of these deviations.}
220   
221 \section{ The P{\scshape e}CO Protocol Description}
222 \label{sec:The PeCO Protocol Description}
223
224 %In  this  section,  the Perimeter-based  Coverage
225 %Optimization protocol is decribed in details.  First we present the  assumptions we made and the models
226 %we considered (in particular the perimeter coverage one), second we describe the
227 %background idea of our protocol, and third  we give the outline of the algorithm
228 %executed by each node.
229
230
231 \subsection{Assumptions and Models}
232 \label{CI}
233
234 A  WSN  consisting  of  $J$  stationary  sensor  nodes  randomly  and  uniformly
235 distributed in  a bounded sensor field  is considered. The wireless  sensors are
236 deployed in high density  to ensure initially a high coverage  ratio of the area
237 of interest.  We  assume that all the  sensor nodes are homogeneous  in terms of
238 communication, sensing,  and processing capabilities and  heterogeneous from the
239 energy provision  point of  view.  The  location information  is available  to a
240 sensor node either  through hardware such as embedded GPS  or location discovery
241 algorithms. We consider a Boolean disk  coverage model, which is the most widely
242 used  sensor coverage  model in  the  literature, and  all sensor  nodes have  a
243 constant sensing range $R_s$.  Thus, all the space points within a disk centered
244 at a sensor with  a radius equal to the sensing range are  said to be covered by
245 this sensor.  We also assume that  the communication range $R_c$  satisfies $R_c
246 \geq 2  \cdot R_s$.  In fact,  \citet{Zhang05} proved  that if  the transmission
247 range fulfills the  previous hypothesis, the complete coverage of  a convex area
248 implies connectivity among active nodes.
249
250 The    PeCO   protocol    uses    the   same    perimeter-coverage   model    as
251 \citet{huang2005coverage}. It can  be expressed as follows: a sensor  is said to
252 be perimeter covered if all the points  on its perimeter are covered by at least
253 one sensor other  than itself.  Authors \citet{huang2005coverage}  proved that a
254 network area  is $k$-covered  (every point in  the area is  covered by  at least
255 $k$~sensors) if and only if each  sensor in the network is $k$-perimeter-covered
256 (perimeter covered by at least $k$ sensors).
257  
258 Figure~\ref{figure1}(a) shows the coverage of  sensor node~$0$.  On this figure,
259 sensor~$0$  has nine  neighbors  and  we have  reported  on  its perimeter  (the
260 perimeter of the  disk covered by the  sensor) for each neighbor  the two points
261 resulting from  the intersection  of the  two sensing  areas.  These  points are
262 denoted for neighbor~$i$ by $iL$ and  $iR$, respectively for left and right from
263 a  neighboring point  of view.   The  resulting couples  of intersection  points
264 subdivide the perimeter of sensor~$0$ into portions called arcs.
265
266 \begin{figure}[ht!]
267   \centering
268   \begin{tabular}{@{}cr@{}}
269     \includegraphics[width=75mm]{figure1a.eps} & \raisebox{3.25cm}{(a)} \\
270     \includegraphics[width=75mm]{figure1b.eps} & \raisebox{2.75cm}{(b)}
271   \end{tabular}
272   \caption{(a) Perimeter  coverage of sensor node  0 and (b) finding  the arc of
273     $u$'s perimeter covered by $v$.}
274   \label{figure1}
275 \end{figure} 
276
277 Figure~\ref{figure1}(b)  describes the  geometric information  used to  find the
278 locations of the  left and right points of  an arc on the perimeter  of a sensor
279 node~$u$ covered by a sensor node~$v$. Node~$v$ is supposed to be located on the
280 west  side of  sensor~$u$,  with  the following  respective  coordinates in  the
281 sensing area~:  $(v_x,v_y)$ and $(u_x,u_y)$.  From the previous  coordinates the
282 euclidean distance between nodes~$u$ and $v$ is computed as follows:
283 $$
284   Dist(u,v)=\sqrt{\vert u_x - v_x \vert^2 + \vert u_y-v_y \vert^2},
285 $$
286 while the angle~$\alpha$ is obtained through the formula:
287  \[
288 \alpha = \arccos \left(\frac{Dist(u,v)}{2R_s} \right).
289 \] 
290 The  arc  on the  perimeter  of~$u$  defined by  the  angular  interval $[\pi  -
291   \alpha,\pi + \alpha]$ is then said to be perimeter-covered by sensor~$v$.
292
293 Every couple of intersection points is placed on the angular interval $[0,2\pi)$
294 in  a  counterclockwise manner,  leading  to  a  partitioning of  the  interval.
295 Figure~\ref{figure1}(a)  illustrates  the arcs  for  the  nine neighbors  of
296 sensor $0$ and  Table~\ref{my-label} gives the position of  the corresponding arcs
297 in  the interval  $[0,2\pi)$. More  precisely, the  points are
298 ordered according  to the  measures of  the angles  defined by  their respective
299 positions. The intersection points are  then visited one after another, starting
300 from the first  intersection point  after  point~zero,  and  the maximum  level  of
301 coverage is determined  for each interval defined by two  successive points. The
302 maximum  level of  coverage is  equal to  the number  of overlapping  arcs.  For
303 example, between~$5L$  and~$6L$ the maximum  level of  coverage is equal  to $3$
304 (the value is highlighted in yellow  at the bottom of Figure~\ref{figure2}), which
305 means that at most 2~neighbors can cover  the perimeter in addition to node $0$. 
306 Table~\ref{my-label} summarizes for each coverage  interval the maximum level of
307 coverage and  the sensor  nodes covering the  perimeter.  The  example discussed
308 above is thus given by the sixth line of the table.
309
310 \begin{figure*}[t!]
311 \centering
312 \includegraphics[width=0.95\linewidth]{figure2.eps}  
313 \caption{Maximum coverage levels for perimeter of sensor node $0$.}
314 \label{figure2}
315 \end{figure*} 
316
317 \begin{table}
318 \tbl{Coverage intervals and contributing sensors for node 0 \label{my-label}}
319 {\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
320 \hline
321 \begin{tabular}[c]{@{}c@{}}Left \\ point \\ angle~$\alpha$ \end{tabular} & \begin{tabular}[c]{@{}c@{}}Interval \\ left \\ point\end{tabular} & \begin{tabular}[c]{@{}c@{}}Interval \\ right \\ point\end{tabular} & \begin{tabular}[c]{@{}c@{}}Maximum \\ coverage\\  level\end{tabular} & \multicolumn{5}{c|}{\begin{tabular}[c]{@{}c@{}}Set of sensors\\ involved \\ in coverage interval\end{tabular}} \\ \hline
322 0.0291    & 1L                                                                        & 2L                                                        & 4                                                                     & 0                     & 1                     & 3                    & 4                    &                      \\ \hline
323 0.104     & 2L                                                                        & 3R                                                        & 5                                                                     & 0                     & 1                     & 3                    & 4                    & 2                    \\ \hline
324 0.3168    & 3R                                                                        & 4R                                                        & 4                                                                     & 0                     & 1                     & 4                    & 2                    &                      \\ \hline
325 0.6752    & 4R                                                                        & 1R                                                        & 3                                                                     & 0                     & 1                     & 2                    &                      &                      \\ \hline
326 1.8127    & 1R                                                                        & 5L                                                        & 2                                                                     & 0                     & 2                     &                      &                      &                      \\ \hline
327 1.9228    & 5L                                                                        & 6L                                                        & 3                                                                     & 0                     & 2                     & 5                    &                      &                      \\ \hline
328 2.3959    & 6L                                                                        & 2R                                                        & 4                                                                     & 0                     & 2                     & 5                    & 6                    &                      \\ \hline
329 2.4258    & 2R                                                                        & 7L                                                        & 3                                                                     & 0                     & 5                     & 6                    &                      &                      \\ \hline
330 2.7868    & 7L                                                                        & 8L                                                        & 4                                                                     & 0                     & 5                     & 6                    & 7                    &                      \\ \hline
331 2.8358    & 8L                                                                        & 5R                                                        & 5                                                                     & 0                     & 5                     & 6                    & 7                    & 8                    \\ \hline
332 2.9184    & 5R                                                                        & 7R                                                        & 4                                                                     & 0                     & 6                     & 7                    & 8                    &                      \\ \hline
333 3.3301    & 7R                                                                        & 9R                                                        & 3                                                                     & 0                     & 6                     & 8                    &                      &                      \\ \hline
334 3.9464    & 9R                                                                        & 6R                                                        & 4                                                                     & 0                     & 6                     & 8                    & 9                    &                      \\ \hline
335 4.767     & 6R                                                                        & 3L                                                        & 3                                                                     & 0                     & 8                     & 9                    &                      &                      \\ \hline
336 4.8425    & 3L                                                                        & 8R                                                        & 4                                                                     & 0                     & 3                     & 8                    & 9                    &                      \\ \hline
337 4.9072    & 8R                                                                        & 4L                                                        & 3                                                                     & 0                     & 3                     & 9                    &                      &                      \\ \hline
338 5.3804    & 4L                                                                        & 9R                                                        & 4                                                                     & 0                     & 3                     & 4                    & 9                    &                      \\ \hline
339 5.9157    & 9R                                                                        & 1L                                                        & 3                                                                     & 0                     & 3                     & 4                    &                      &                      \\ \hline
340 \end{tabular}}
341
342
343 \end{table}
344
345 In  the  PeCO protocol,  the  scheduling  of  the  sensor nodes'  activities  is
346 formulated    with    an    mixed-integer     program    based    on    coverage
347 intervals~\citep{doi:10.1155/2010/926075}.  The  formulation   of  the  coverage
348 optimization problem is  detailed in~Section~\ref{cp}.  Note that  when a sensor
349 node  has a  part of  its sensing  range outside  the WSN  sensing field,  as in
350 Figure~\ref{figure3}, the maximum coverage level for this arc is set to $\infty$
351 and  the  corresponding  interval  will  not   be  taken  into  account  by  the
352 optimization algorithm.
353
354 %\newpage
355 \begin{figure}[h!]
356 \centering
357 \includegraphics[width=62.5mm]{figure3.eps}  
358 \caption{Sensing range outside the WSN's area of interest.}
359 \label{figure3}
360 \end{figure}
361
362 \vspace{-0.25cm}
363
364 \subsection{Main Idea}
365
366 The WSN area of  interest is, in a first step,  divided into regular homogeneous
367 subregions using a  divide-and-conquer algorithm. In a second  step our protocol
368 will  be executed  in  a distributed  way in  each  subregion simultaneously  to
369 schedule nodes' activities  for one sensing period. Node Sensors  are assumed to
370 be deployed  almost uniformly over the  region. The regular subdivision  is made
371 such that the number of hops between  any pairs of sensors inside a subregion is
372 less than or equal to 3.
373
374 As shown  in Figure~\ref{figure4}, node  activity scheduling is produced  by the
375 proposed protocol  in a periodic manner.  Each period is divided  into 4 stages:
376 Information  (INFO)  Exchange,  Leader  Election, Decision  (the  result  of  an
377 optimization problem),  and Sensing.  For each  period there is exactly  one set
378 cover responsible for  the sensing task.  Protocols based on  a periodic scheme,
379 like PeCO, are more robust against an  unexpected node failure. On the one hand,
380 if a  node failure is discovered  before taking the decision,  the corresponding
381 sensor node will  not be considered by the optimization  algorithm. On the other
382 hand, if the sensor failure happens after  the decision, the sensing task of the
383 network will be temporarily affected: only  during the period of sensing until a
384 new period starts, since a new set cover will take charge of the sensing task in
385 the next period. The energy consumption and some other constraints can easily be
386 taken  into  account since  the  sensors  can  update  and then  exchange  their
387 information (including their  residual energy) at the beginning  of each period.
388 However, the pre-sensing  phases (INFO Exchange, Leader  Election, and Decision)
389 are energy consuming, even for nodes that will not join the set cover to monitor
390 the area. Sensing  period duration is adapted according to  the QoS requirements
391 of the application.
392
393 \begin{figure}[t!]
394 \centering
395 \includegraphics[width=85mm]{figure4.eps}  
396 \caption{PeCO protocol.}
397 \label{figure4}
398 \end{figure} 
399
400 We define two types of packets to be used by PeCO protocol:
401 \begin{itemize} 
402 \item INFO  packet: sent  by each  sensor node to  all the  nodes inside  a same
403   subregion for information exchange.
404 \item ActiveSleep packet: sent  by the leader to all the  nodes in its subregion
405   to transmit to  them their respective status (stay Active  or go Sleep) during
406   sensing phase.
407 \end{itemize}
408
409 Five statuses are possible for a sensor node in the network:
410 \begin{itemize} 
411 \item LISTENING: waits for a decision (to be active or not);
412 \item COMPUTATION: executes the optimization algorithm as leader to
413   determine the activities scheduling;
414 \item ACTIVE: node is sensing;
415 \item SLEEP: node is turned off;
416 \item COMMUNICATION: transmits or receives packets.
417 \end{itemize}
418
419 \subsection{PeCO Protocol Algorithm}
420
421 The  pseudocode implementing  the  protocol  on a  node  is  given below.   More
422 precisely, Algorithm~\ref{alg:PeCO}  gives a  brief description of  the protocol
423 applied by a sensor node $s_k$ where $k$ is the node index in the WSN.
424
425
426 \begin{algorithm2e}      
427  % \KwIn{all the parameters related to information exchange}
428 %  \KwOut{$winer-node$ (: the id of the winner sensor node, which is the leader of current round)}
429 %  \BlankLine
430   %\emph{Initialize the sensor node and determine it's position and subregion} \;
431   \label{alg:PeCO}
432   \caption{PeCO pseudocode}
433   \eIf{$RE_k \geq E_{th}$}{
434     $s_k.status$ = COMMUNICATION\;
435     Send $INFO()$ packet to other nodes in subregion\;
436     Wait $INFO()$ packet from other nodes in subregion\;
437     Update K.CurrentSize\;
438     LeaderID = Leader election\;
439     \eIf{$s_k.ID = LeaderID$}{
440       $s_k.status$ = COMPUTATION\;
441       \If{$ s_k.ID $ is Not previously selected as a Leader}{
442         Execute the perimeter coverage model\;
443       }
444       \eIf{($s_k.ID $ is the same Previous Leader) {\bf and} \\
445         \indent (K.CurrentSize = K.PreviousSize)}{
446         Use the same previous cover set for current sensing stage\;
447       }{
448         Update $a^j_{ik}$; prepare data for IP~Algorithm\;
449         $\left\{\left(X_{1},\dots,X_{l},\dots,X_{K}\right)\right\}$ = Execute Integer Program Algorithm($K$)\;
450         K.PreviousSize = K.CurrentSize\;
451       }
452       $s_k.status$ = COMMUNICATION\;
453       Send $ActiveSleep()$ to each node $l$ in subregion\;
454       Update $RE_k $\;
455     }{
456       $s_k.status$ = LISTENING\;
457       Wait $ActiveSleep()$ packet from the Leader\;
458       Update $RE_k $\;
459     }
460   }{
461     Exclude $s_k$ from entering in the current sensing stage\;
462   }
463 \end{algorithm2e}
464
465 %\begin{algorithm}
466 %\noindent{\bf If} $RE_k \geq E_{th}$ {\bf then}\\
467 %\hspace*{0.6cm} \emph{$s_k.status$ = COMMUNICATION;}\\
468 %\hspace*{0.6cm}  \emph{Send $INFO()$ packet to other nodes in subregion;}\\
469 %\hspace*{0.6cm}  \emph{Wait $INFO()$ packet from other nodes in subregion;}\\
470 %\hspace*{0.6cm} \emph{Update K.CurrentSize;}\\
471 %\hspace*{0.6cm}  \emph{LeaderID = Leader election;}\\
472 %\hspace*{0.6cm} {\bf If} $ s_k.ID = LeaderID $ {\bf then}\\
473 %\hspace*{1.2cm}   \emph{$s_k.status$ = COMPUTATION;}\\
474 %\hspace*{1.2cm}{\bf If} \emph{$ s_k.ID $ is Not previously selected as a Leader} {\bf then}\\
475 %\hspace*{1.8cm} \emph{ Execute the perimeter coverage model;}\\
476 %\hspace*{1.2cm} {\bf end}\\
477 %\hspace*{1.2cm}{\bf If} \emph{($s_k.ID $ is the same Previous Leader)~And~(K.CurrentSize = K.PreviousSize)}\\
478 %\hspace*{1.8cm} \emph{ Use the same previous cover set for current sensing stage;}\\
479 %\hspace*{1.2cm}  {\bf end}\\
480 %\hspace*{1.2cm}  {\bf else}\\
481 %\hspace*{1.8cm}\emph{Update $a^j_{ik}$; prepare data for IP~Algorithm;}\\
482 %\hspace*{1.8cm} \emph{$\left\{\left(X_{1},\dots,X_{l},\dots,X_{K}\right)\right\}$ = Execute Integer Program Algorithm($K$);}\\
483 %\hspace*{1.8cm} \emph{K.PreviousSize = K.CurrentSize;}\\
484 %\hspace*{1.2cm}  {\bf end}\\
485 %\hspace*{1.2cm}\emph{$s_k.status$ = COMMUNICATION;}\\
486 %\hspace*{1.2cm}\emph{Send $ActiveSleep()$ to each node $l$ in subregion;}\\
487 %\hspace*{1.2cm}\emph{Update $RE_k $;}\\
488 %\hspace*{0.6cm}  {\bf end}\\
489 %\hspace*{0.6cm}  {\bf else}\\
490 %\hspace*{1.2cm}\emph{$s_k.status$ = LISTENING;}\\
491 %\hspace*{1.2cm}\emph{Wait $ActiveSleep()$ packet from the Leader;}\\
492 %\hspace*{1.2cm}\emph{Update $RE_k $;}\\
493 %\hspace*{0.6cm}  {\bf end}\\
494 %{\bf end}\\
495 %{\bf else}\\
496 %\hspace*{0.6cm} \emph{Exclude $s_k$ from entering in the current sensing stage;}\\
497 %{\bf end}\\
498 %\label{alg:PeCO}
499 %\end{algorithm}
500
501 In this  algorithm, $K.CurrentSize$ and $K.PreviousSize$  respectively represent
502 the current number and the previous number  of living nodes in the subnetwork of
503 the  subregion.   At the  beginning  of  the  first period  $K.PreviousSize$  is
504 initialized to  zero.  Initially,  the sensor node  checks its  remaining energy
505 $RE_k$, which must be greater than  a threshold $E_{th}$ in order to participate
506 in  the current  period.   Each  sensor node  determines  its  position and  its
507 subregion using an  embedded GPS or a location discovery  algorithm. After that,
508 all the sensors collect position  coordinates, remaining energy, sensor node ID,
509 and the number of their one-hop  live neighbors during the information exchange.
510 The sensors  inside a same  region cooperate to  elect a leader.   The selection
511 criteria for the leader are (in order  of priority):
512 \begin{enumerate}
513 \item larger number of neighbors;
514 \item larger  remaining energy;
515 \item and then  in case  of equality,  larger index.
516 \end{enumerate}
517 Once chosen, the leader collects information  to formulate and solve the integer
518 program  which allows  to construct  the set  of active  sensors in  the sensing
519 stage.
520
521 \section{Perimeter-based Coverage Problem Formulation}
522 \label{cp}
523
524 In  this  section,  the   perimeter-based  coverage  problem  is  mathematically
525 formulated.    It    has    been    proved   to    be    a    NP-hard    problem
526 by \citep{doi:10.1155/2010/926075}. Authors  study the coverage of  the perimeter
527 of a  large object requiring  to be monitored.  For the proposed  formulation in
528 this paper,  the large  object to  be monitored  is the  sensor itself  (or more
529 precisely its sensing area).
530
531 The following notations are used  throughout the section.
532
533 First, the following sets:
534 \begin{itemize}
535 \item $S$ represents the set of sensor nodes;
536 \item $A \subseteq S $ is the subset of alive sensors;
537 \item  $I_j$  designates  the  set  of  coverage  intervals  (CI)  obtained  for
538   sensor~$j$.
539 \end{itemize}
540 $I_j$ refers to the set of  coverage intervals which have been defined according
541 to the  method introduced in  subsection~\ref{CI}. For a coverage  interval $i$,
542 let $a^j_{ik}$ denote  the indicator function of whether  sensor~$k$ is involved
543 in coverage interval~$i$ of sensor~$j$, that is:
544 \begin{equation}
545 a^j_{ik} = \left \{ 
546 \begin{array}{lll}
547   1 & \mbox{if sensor $k$ is involved in the } \\
548         &       \mbox{coverage interval $i$ of sensor $j$}, \\
549   0 & \mbox{otherwise.}\\
550 \end{array} \right.
551 \end{equation}
552 Note that $a^k_{ik}=1$ by definition of the interval.
553
554 Second,  several variables  are defined.   Hence, each  binary variable  $X_{k}$
555 determines the  activation of sensor  $k$ in the  sensing phase ($X_k=1$  if the
556 sensor $k$ is active or 0 otherwise).   $M^j_i$ is a variable which measures the
557 undercoverage for the coverage interval  $i$ corresponding to sensor~$j$. In the
558 same  way, the  overcoverage for  the  same coverage  interval is  given by  the
559 variable $V^j_i$.
560
561 To sustain a  level of coverage equal  to $l$ all along the  perimeter of sensor
562 $j$, at  least $l$  sensors involved in  each coverage interval  $i \in  I_j$ of
563 sensor $j$ have  to be active.  According to the  previous notations, the number
564 of  active sensors  in the  coverage  interval $i$  of  sensor $j$  is given  by
565 $\sum_{k \in A} a^j_{ik} X_k$.  To extend the network lifetime, the objective is
566 to activate  a minimal number  of sensors in each  period to ensure  the desired
567 coverage level. As the number of  alive sensors decreases, it becomes impossible
568 to reach  the desired level  of coverage  for all coverage  intervals. Therefore
569 variables  $M^j_i$ and  $V^j_i$ are  introduced as  a measure  of the  deviation
570 between the  desired number  of active  sensors in a  coverage interval  and the
571 effective number.  And we try to  minimize these deviations, first  to force the
572 activation of a minimal number of  sensors to ensure the desired coverage level,
573 and if  the desired level  cannot be completely  satisfied, to reach  a coverage
574 level as close as possible to the desired one.
575
576 The coverage optimization problem can then be mathematically expressed as follows:
577 \begin{equation}
578   \begin{aligned}
579     \text{Minimize } & \sum_{j \in S} \sum_{i \in I_j} (\alpha^j_i ~ M^j_i + \beta^j_i ~ V^j_i ) \\
580     \text{Subject to:} & \\
581     & \sum_{k \in A} ( a^j_{ik} ~ X_{k}) + M^j_i  \geq l \quad \forall i \in I_j, \forall j \in S  \\
582     & \sum_{k \in A} ( a^j_{ik} ~ X_{k}) - V^j_i  \leq l \quad \forall i \in I_j, \forall j \in S \\
583     & X_{k} \in \{0,1\}, \forall k \in A \\
584     & M^j_i, V^j_i \in \mathbb{R}^{+} 
585   \end{aligned}
586 \end{equation}
587
588 %\begin{equation} 
589 %\left \{
590 %\begin{array}{ll}
591 %\min \sum_{j \in S} \sum_{i \in I_j} (\alpha^j_i ~ M^j_i + \beta^j_i ~ V^j_i ) & \\
592 %\textrm{subject to :} &\\
593 %\sum_{k \in A} ( a^j_{ik} ~ X_{k}) + M^j_i  \geq l \quad \forall i \in I_j, \forall j \in S\\
594 %\sum_{k \in A} ( a^j_{ik} ~ X_{k}) - V^j_i  \leq l \quad \forall i \in I_j, \forall j \in S\\
595 %X_{k} \in \{0,1\}, \forall k \in A \\
596 %M^j_i, V^j_i \in \mathbb{R}^{+} 
597 %\end{array}
598 %\right.
599 %\end{equation}
600
601 If a given level of coverage $l$ is  required for one sensor, the sensor is said
602 to be undercovered (respectively overcovered) if the level of coverage of one of
603 its  CI  is  less  (respectively  greater)  than $l$.   If  the  sensor  $j$  is
604 undercovered, there exists at least one of its CI (say $i$) for which the number
605 of active  sensors (denoted by $l^{i}$)  covering this part of  the perimeter is
606 less than $l$ and in this case : $M_{i}^{j}=l-l^{i}$, $V_{i}^{j}=0$. Conversely,
607 if the sensor $j$ is overcovered, there exists  at least one of its CI (say $i$)
608 for which the  number of active sensors (denoted by  $l^{i}$) covering this part
609 of  the  perimeter  is  greater  than  $l$  and  in  this  case:  $M_{i}^{j}=0$,
610 $V_{i}^{j}=l^{i}-l$.
611
612 $\alpha^j_i$ and $\beta^j_i$  are nonnegative weights selected  according to the
613 relative importance of satisfying the associated level of coverage. For example,
614 weights associated with  coverage intervals of a specified part  of a region may
615 be given by  a relatively larger magnitude than weights  associated with another
616 region. This kind of mixed-integer program  is inspired from the model developed
617 for   brachytherapy  treatment   planning  for   optimizing  dose   distribution
618 \citep{0031-9155-44-1-012}.  The choice of the values for variables $\alpha$ and
619 $\beta$  should be  made according  to the  needs of  the application.  $\alpha$
620 should be  large enough  to prevent  undercoverage and so  to reach  the highest
621 possible coverage ratio. $\beta$ should  be large enough to prevent overcoverage
622 and so to activate a minimum  number of sensors.  The mixed-integer program must
623 be solved  by the  leader in  each subregion  at the  beginning of  each sensing
624 phase, whenever the environment has changed (new leader, death of some sensors).
625 Note that  the number of  constraints in the  model is constant  (constraints of
626 coverage  expressed for  all sensors),  whereas  the number  of variables  $X_k$
627 decreases over periods, since only alive  sensors (sensors with enough energy to
628 be alive during one sensing phase) are considered in the model.
629
630 \section{Performance Evaluation and Analysis}  
631 \label{sec:Simulation Results and Analysis}
632
633 \subsection{Simulation Settings}
634
635 The WSN  area of interest is  supposed to be divided  into 16~regular subregions
636 and   we  use   the  same   energy  consumption   model  as   in  our   previous
637 work~\citep{Idrees2}.  Table~\ref{table3} gives the chosen parameters settings.
638
639 \begin{table}[ht]
640 \tbl{Relevant parameters for network initialization \label{table3}}{
641 \centering
642 \begin{tabular}{c|c}
643 \hline
644 Parameter & Value  \\ [0.5ex]
645 \hline
646 % inserts single horizontal line
647 Sensing field & $(50 \times 25)~m^2 $ \\
648 WSN size &  100, 150, 200, 250, and 300~nodes \\
649 Initial energy  & in range 500-700~Joules \\  
650 Sensing period & duration of 60 minutes \\
651 $E_{th}$ & 36~Joules \\
652 $R_s$ & 5~m \\     
653 $R_c$ & 10~m \\   
654 $\alpha^j_i$ & 0.6 \\
655 $\beta^j_i$ & 0.4
656 \end{tabular}}
657 \end{table}
658
659 To  obtain  experimental  results  which are  relevant,  simulations  with  five
660 different node densities going from  100 to 300~nodes were performed considering
661 each time 25~randomly  generated networks. The nodes are deployed  on a field of
662 interest of $(50 \times 25)~m^2 $ in such a way that they cover the field with a
663 high coverage ratio. Each node has an  initial energy level, in Joules, which is
664 randomly drawn in  the interval $[500-700]$.  If its energy  provision reaches a
665 value below  the threshold $E_{th}=36$~Joules,  the minimum energy needed  for a
666 node to  stay active  during one period,  it will no  longer participate  in the
667 coverage task. This value corresponds to the energy needed by the sensing phase,
668 obtained by multiplying  the energy consumed in the active  state (9.72 mW) with
669 the time in seconds for one period (3600 seconds), and adding the energy for the
670 pre-sensing phases.  According  to the interval of initial energy,  a sensor may
671 be active during at most 20 periods.
672
673 The values  of $\alpha^j_i$ and  $\beta^j_i$ have been  chosen to ensure  a good
674 network coverage  and a longer  WSN lifetime.  Higher  priority is given  to the
675 undercoverage (by setting the $\alpha^j_i$ with a larger value than $\beta^j_i$)
676 so as  to prevent the non-coverage  for the interval~$i$ of  the sensor~$j$.  On
677 the other hand, $\beta^j_i$ is assigned to a value which is slightly lower so as
678 to minimize the  number of active sensor nodes which  contribute in covering the
679 interval. Subsection~\ref{sec:Impact} investigates more deeply how the values of
680 both parameters affect the performance of PeCO protocol.
681
682 The following performance metrics are used to evaluate the efficiency of the
683 approach.
684 \begin{itemize}
685 \item {\bf Network Lifetime}: the lifetime  is defined as the time elapsed until
686   the  coverage  ratio  falls  below a  fixed  threshold.   $Lifetime_{95}$  and
687   $Lifetime_{50}$  denote, respectively,  the  amount of  time  during which  is
688   guaranteed a  level of coverage  greater than $95\%$  and $50\%$. The  WSN can
689   fulfill the expected  monitoring task until all its nodes  have depleted their
690   energy or if the network is no  more connected. This last condition is crucial
691   because without  network connectivity a  sensor may not be  able to send  to a
692   base station an event it has sensed.
693 \item {\bf  Coverage Ratio (CR)} : it  measures how  well the  WSN is  able to
694   observe the area of interest. In our  case, the sensor field is discretized as
695   a regular grid, which yields the following equation:
696   \begin{equation*}
697     \scriptsize
698     \mbox{CR}(\%) = \frac{\mbox{$n$}}{\mbox{$N$}} \times 100
699   \end{equation*}
700   where $n$  is the  number of covered  grid points by  active sensors  of every
701   subregions during  the current sensing phase  and $N$ is total  number of grid
702   points in the sensing field. A layout of $N~=~51~\times~26~=~1326$~grid points
703   is considered in the simulations.
704 \item {\bf Active Sensors Ratio (ASR)}: a  major objective of our protocol is to
705   activate as  few nodes  as possible,  in order  to minimize  the communication
706   overhead and maximize the WSN lifetime. The active sensors ratio is defined as
707   follows:
708   \begin{equation*}
709    \scriptsize
710    \mbox{ASR}(\%) =  \frac{\sum\limits_{r=1}^R \mbox{$|A_r^p|$}}{\mbox{$|J|$}} \times 100
711   \end{equation*}
712   where $|A_r^p|$ is  the number of active  sensors in the subregion  $r$ in the
713   sensing period~$p$, $R$  is the number of subregions, and  $|J|$ is the number
714   of sensors in the network.
715 \item {\bf Energy Consumption (EC)}: energy consumption can be seen as the total
716   energy  consumed by  the  sensors during  $Lifetime_{95}$ or  $Lifetime_{50}$,
717   divided by  the number of  periods. The value of  EC is computed  according to
718   this formula:
719   \begin{equation*} 
720     \scriptsize
721     \mbox{EC} = \frac{\sum\limits_{p=1}^{P} \left( E^{\mbox{com}}_p+E^{\mbox{list}}_p+E^{\mbox{comp}}_p  
722       + E^{a}_p+E^{s}_p \right)}{P},
723   \end{equation*}
724   where $P$ corresponds  to the number of periods. The  total energy consumed by
725   the  sensors  comes  through  taking   into  consideration  four  main  energy
726   factors. The first one, denoted $E^{\scriptsize \mbox{com}}_p$, represents the
727   energy consumption spent  by all the nodes for  wireless communications during
728   period $p$.  $E^{\scriptsize \mbox{list}}_p$,  the next factor, corresponds to
729   the energy  consumed by the sensors  in LISTENING status before  receiving the
730   decision to go active or sleep in period $p$.  $E^{\scriptsize \mbox{comp}}_p$
731   refers to  the energy  needed by  all the  leader nodes  to solve  the integer
732   program  during  a  period   (COMPUTATION  status).   Finally,  $E^a_{p}$  and
733   $E^s_{p}$ indicate  the energy consumed  by the  WSN during the  sensing phase
734   ({\it active} and {\it sleeping} nodes).
735 \end{itemize}
736
737 \subsection{Simulation Results}
738
739 In  order  to  assess and  analyze  the  performance  of  our protocol  we  have
740 implemented PeCO  protocol in OMNeT++~\citep{varga} simulator.   The simulations
741 were run  on a DELL laptop  with an Intel Core~i3~2370~M  (1.8~GHz) processor (2
742 cores) whose MIPS  (Million Instructions Per Second) rate is  equal to 35330. To
743 be consistent  with the  use of  a sensor  node based  on Atmels  AVR ATmega103L
744 microcontroller (6~MHz)  having a MIPS rate  equal to 6, the  original execution
745 time  on  the  laptop  is multiplied  by  2944.2  $\left(\frac{35330}{2}  \times
746 \frac{1}{6} \right)$.  Energy  consumption is calculated according  to the power
747 consumption  values,  in  milliWatt  per  second,  given  in  Table~\ref{tab:EC}
748 based on the energy model proposed in \citep{ChinhVu}.
749
750 % Questions on energy consumption calculation
751 % 1 - How did you compute the value for COMPUTATION status ?
752 % 2 - I have checked the paper of Chinh T. Vu (2006) and I wonder
753 % why you completely deleted the energy due to the sensing range ?
754 % => You should have use a fixed value for the sensing rangge Rs (5 meter)
755 % => for all the nodes to compute f(Ri), which would have lead to energy values
756
757 \begin{table}[h]
758 \centering
759 \caption{Energy consumption}
760 \label{tab:EC}
761 \begin{tabular}{|l||cccc|}
762   \hline
763   {\bf Sensor status} & MCU & Radio & Sensor & {\it Power (mW)} \\
764   \hline
765   LISTENING & On & On & On & 20.05 \\
766   ACTIVE & On & Off & On & 9.72 \\
767   SLEEP & Off & Off & Off & 0.02 \\
768   COMPUTATION & On & On & On & 26.83 \\
769   \hline
770   \multicolumn{4}{|l}{Energy needed to send or receive a 2-bit content message} & 0.515 \\
771   \hline
772 \end{tabular}
773 \end{table}
774
775 The modeling  language for Mathematical Programming  (AMPL)~\citep{AMPL} is used
776 to generate  the integer program  instance in a  standard format, which  is then
777 read and  solved by  the optimization  solver GLPK  (GNU linear  Programming Kit
778 available in the public domain) \citep{glpk} through a Branch-and-Bound method.
779
780 % No discussion about the execution of GLPK on a sensor ?
781
782 Besides  PeCO,   three  other  protocols   will  be  evaluated   for  comparison
783 purposes. The first one, called DESK,  is a fully distributed coverage algorithm
784 proposed      by     \citep{ChinhVu}.       The      second     one,      called
785 GAF~\citep{xu2001geography}, consists in dividing the monitoring area into fixed
786 squares. Then, during  the decision phase, in each square,  one sensor is chosen
787 to  remain  active   during  the  sensing  phase.   The  last   one,  the  DiLCO
788 protocol~\citep{Idrees2}, is an improved version of a research work we presented
789 in~\citep{idrees2014coverage}. Let us  notice that PeCO and  DiLCO protocols are
790 based on the same framework. In particular,  the choice for the simulations of a
791 partitioning  in   16~subregions  was  made   because  it  corresponds   to  the
792 configuration  producing  the  best  results   for  DiLCO.   The  protocols  are
793 distinguished  from  one another  by  the  formulation  of the  integer  program
794 providing  the  set of  sensors  which  have to  be  activated  in each  sensing
795 phase. DiLCO protocol tries to satisfy the  coverage of a set of primary points,
796 whereas PeCO protocol objective is to reach a desired level of coverage for each
797 sensor perimeter. In our experimentations, we chose a level of coverage equal to
798 one ($l=1$).
799
800 \subsubsection{Coverage Ratio}
801
802 Figure~\ref{figure5} shows  the average  coverage ratio  for 200  deployed nodes
803 obtained with the four protocols. DESK, GAF, and DiLCO provide a slightly better
804 coverage ratio with respectively 99.99\%,  99.91\%, and 99.02\%, compared to the
805 98.76\% produced by PeCO for the first periods.  This is due to the fact that at
806 the beginning PeCO  protocol puts to sleep status more  redundant sensors (which
807 slightly decreases the coverage ratio), while the three other protocols activate
808 more sensor  nodes. Later, when the  number of periods is  beyond~70, it clearly
809 appears that  PeCO provides a better  coverage ratio and keeps  a coverage ratio
810 greater  than 50\%  for  longer periods  (15  more compared  to  DiLCO, 40  more
811 compared to DESK). The energy saved by  PeCO in the early periods allows later a
812 substantial increase of the coverage performance.
813
814 \parskip 0pt    
815 \begin{figure}[h!]
816 \centering
817  \includegraphics[scale=0.5] {figure5.eps} 
818 \caption{Coverage ratio for 200 deployed nodes.}
819 \label{figure5}
820 \end{figure} 
821
822 \subsubsection{Active Sensors Ratio}
823
824 Having the less active sensor nodes in  each period is essential to minimize the
825 energy   consumption    and   thus    to   maximize   the    network   lifetime.
826 Figure~\ref{figure6}  shows the  average  active nodes  ratio  for 200  deployed
827 nodes.  We observe that DESK and GAF have 30.36~\% and 34.96~\% active nodes for
828 the first fourteen  rounds, and DiLCO and PeCO protocols  compete perfectly with
829 only 17.92~\%  and 20.16~\% active nodes  during the same time  interval. As the
830 number of periods increases, PeCO protocol has a lower number of active nodes in
831 comparison with the  three other approaches and exhibits a  slow decrease, while
832 keeping a greater coverage ratio as shown in Figure \ref{figure5}.
833
834 \begin{figure}[h!]
835 \centering
836 \includegraphics[scale=0.5]{figure6.eps}  
837 \caption{Active sensors ratio for 200 deployed nodes.}
838 \label{figure6}
839 \end{figure} 
840
841 \subsubsection{Energy Consumption}
842
843 The  effect  of  the  energy  consumed by  the  WSN  during  the  communication,
844 computation,  listening,  active, and  sleep  status  is studied  for  different
845 network densities  and the  four approaches  compared.  Figures~\ref{figure7}(a)
846 and (b)  illustrate the energy consumption  for different network sizes  and for
847 $Lifetime95$ and $Lifetime50$.  The results show  that PeCO protocol is the most
848 competitive from the energy consumption point of view. As shown by both figures,
849 PeCO consumes much less energy than the  other methods. One might think that the
850 resolution of the integer program is too  costly in energy, but the results show
851 that it is very beneficial to lose a  bit of time in the selection of sensors to
852 activate.  Indeed  the optimization program  allows to reduce  significantly the
853 number of  active sensors  and so  the energy consumption  while keeping  a good
854 coverage level. Let  us notice that the energy overhead  when increasing network
855 size is the lowest with PeCO.
856
857 \begin{figure}[h!]
858   \centering
859   \begin{tabular}{@{}cr@{}}
860     \includegraphics[scale=0.5]{figure7a.eps} & \raisebox{2.75cm}{(a)} \\
861     \includegraphics[scale=0.5]{figure7b.eps} & \raisebox{2.75cm}{(b)}
862   \end{tabular}
863   \caption{Energy consumption per period for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
864   \label{figure7}
865 \end{figure} 
866
867 \subsubsection{Network Lifetime}
868
869 We observe the  superiority of both PeCO and DiLCO  protocols in comparison with
870 the   two   other  approaches   in   prolonging   the  network   lifetime.    In
871 Figures~\ref{figure8}(a) and  (b), $Lifetime95$  and $Lifetime50$ are  shown for
872 different  network  sizes.  As  can  be  seen  in  these figures,  the  lifetime
873 increases with the size of the network,  and it is clearly largest for DiLCO and
874 PeCO protocols.  For  instance, for a network of 300~sensors  and coverage ratio
875 greater than  50\%, we can see  on Figure~\ref{figure8}(b) that the  lifetime is
876 about  twice  longer with  PeCO  compared  to  DESK protocol.   The  performance
877 difference    is   more    obvious    in    Figure~\ref{figure8}(b)   than    in
878 Figure~\ref{figure8}(a) because the gain induced by our protocols increases with
879 time, and the lifetime with a coverage over 50\% is far longer than with 95\%.
880
881 \begin{figure}[h!]
882   \centering
883   \begin{tabular}{@{}cr@{}}
884     \includegraphics[scale=0.5]{figure8a.eps} & \raisebox{2.75cm}{(a)} \\  
885     \includegraphics[scale=0.5]{figure8b.eps} & \raisebox{2.75cm}{(b)}
886   \end{tabular}
887   \caption{Network Lifetime for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
888   \label{figure8}
889 \end{figure} 
890
891 Figure~\ref{figure9} compares the lifetime coverage  of DiLCO and PeCO protocols
892 for  different   coverage  ratios.   We  denote  by   Protocol/50,  Protocol/80,
893 Protocol/85, Protocol/90,  and Protocol/95 the  amount of time during  which the
894 network  can satisfy  an  area  coverage greater  than  $50\%$, $80\%$,  $85\%$,
895 $90\%$, and  $95\%$ respectively,  where the  term Protocol  refers to  DiLCO or
896 PeCO.  Indeed there are applications that do not require a 100\% coverage of the
897 area to be  monitored. PeCO might be  an interesting method since  it achieves a
898 good balance  between a  high level  coverage ratio  and network  lifetime. PeCO
899 always  outperforms DiLCO  for the  three  lower coverage  ratios, moreover  the
900 improvements grow  with the network  size. DiLCO  is better for  coverage ratios
901 near 100\%, but  in that case PeCO  is not ineffective for  the smallest network
902 sizes.
903
904 \begin{figure}[h!]
905 \centering \includegraphics[scale=0.55]{figure9.eps}
906 \caption{Network lifetime for different coverage ratios.}
907 \label{figure9}
908 \end{figure} 
909
910 \subsubsection{Impact of $\alpha$ and $\beta$ on PeCO's performance}
911 \label{sec:Impact}
912
913 Table~\ref{my-labelx}  shows network  lifetime results  for different  values of
914 $\alpha$ and $\beta$, and  a network size equal to 200 sensor  nodes. On the one
915 hand, the choice  of $\beta \gg \alpha$ prevents the  overcoverage, and so limit
916 the activation of a large number of  sensors, but as $\alpha$ is low, some areas
917 may be poorly covered.  This explains  the results obtained for {\it Lifetime50}
918 with $\beta \gg \alpha$: a large number  of periods with low coverage ratio.  On
919 the other hand, when we choose $\alpha \gg \beta$, we favor the coverage even if
920 some areas may  be overcovered, so high  coverage ratio is reached,  but a large
921 number  of  sensors are  activated  to  achieve  this goal.   Therefore  network
922 lifetime is reduced.   The choice $\alpha=0.6$ and $\beta=0.4$  seems to achieve
923 the best compromise  between lifetime and coverage ratio.  That  explains why we
924 have  chosen  this  setting  for  the  experiments  presented  in  the  previous
925 subsections.
926
927 %As can be seen in Table~\ref{my-labelx},  it is obvious and clear that when $\alpha$ decreased and $\beta$ increased by any step, the network lifetime for $Lifetime_{50}$ increased and the $Lifetime_{95}$ decreased. Therefore, selecting the values of $\alpha$ and $\beta$ depend on the application type used in the sensor nework. In PeCO protocol, $\alpha$ and $\beta$ are chosen based on the largest value of network lifetime for $Lifetime_{95}$.
928
929 \begin{table}[h]
930 \centering
931 \caption{The impact of $\alpha$ and $\beta$ on PeCO's performance}
932 \label{my-labelx}
933 \begin{tabular}{|c|c|c|c|}
934 \hline
935 $\alpha$ & $\beta$ & $Lifetime_{50}$ & $Lifetime_{95}$ \\ \hline
936 0.0 & 1.0 & 151 & 0 \\ \hline
937 0.1 & 0.9 & 145 & 0 \\ \hline
938 0.2 & 0.8 & 140 & 0 \\ \hline
939 0.3 & 0.7 & 134 & 0 \\ \hline
940 0.4 & 0.6 & 125 & 0 \\ \hline
941 0.5 & 0.5 & 118 & 30 \\ \hline
942 {\bf 0.6} & {\bf 0.4} & {\bf 94} & {\bf 57} \\ \hline
943 0.7 & 0.3 & 97 & 49 \\ \hline
944 0.8 & 0.2 & 90 & 52 \\ \hline
945 0.9 & 0.1 & 77 & 50 \\ \hline
946 1.0 & 0.0 & 60 & 44 \\ \hline
947 \end{tabular}
948 \end{table}
949
950
951 \section{Conclusion and Future Works}
952 \label{sec:Conclusion and Future Works}
953
954 In this paper we have studied  the problem of perimeter coverage optimization in
955 WSNs.   We  have  designed  a  new  protocol,  called  Perimeter-based  Coverage
956 Optimization, which schedules nodes' activities  (wake up and sleep stages) with
957 the objective of maintaining a good  coverage ratio while maximizing the network
958 lifetime.  This protocol  is applied in a distributed way  in regular subregions
959 obtained after partitioning the area of interest in a preliminary step. It works
960 in periods and  is based on the  resolution of an integer program  to select the
961 subset  of sensors  operating in  active status  for each  period.  Our  work is
962 original  in so  far  as it  proposes  for  the first  time  an integer  program
963 scheduling the  activation of sensors  based on their perimeter  coverage level,
964 instead of using a set of targets/points to be covered. Several simulations have
965 been carried out to evaluate the  proposed protocol. The simulation results show
966 that  PeCO is  more  energy-efficient  than other  approaches,  with respect  to
967 lifetime, coverage ratio, active sensors ratio, and energy consumption.
968
969 We plan to extend  our framework so that the schedules  are planned for multiple
970 sensing  periods. We  also want  to  improve the  integer program  to take  into
971 account heterogeneous sensors from both energy and node characteristics point of
972 views.  Finally,  it would  be interesting  to implement  PeCO protocol  using a
973 sensor-testbed to evaluate it in real world applications.
974
975
976 \subsection{Acknowledgements}
977 The authors are deeply grateful to the anonymous reviewers for their constructive advice, which improved the technical quality of the paper. As a  Ph.D.   student, Ali Kadhum IDREES  would  like to  gratefully acknowledge the  University of Babylon - Iraq for financial support  and Campus France for the  received support. This work is also partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01). 
978
979 \bibliographystyle{gENO}
980 \bibliography{biblio} %articleeo
981
982 \end{document}