]> AND Private Git Repository - LiCO.git/blobdiff - PeCO-EO/articleeo.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modifs KD
[LiCO.git] / PeCO-EO / articleeo.tex
index 5f74aa3eb37200dab868ee27225dc2ce4e742992..d4ae9d964e548d9abc49a9d0a6aba66047c52d48 100644 (file)
@@ -17,7 +17,7 @@
 
 \author{Ali Kadhum Idrees$^{a,b}$, Karine Deschinkel$^{a}$$^{\ast}$\thanks{$^\ast$Corresponding author. Email: karine.deschinkel@univ-fcomte.fr}, Michel Salomon$^{a}$ and Rapha\"el Couturier $^{a}$
   $^{a}${\em{FEMTO-ST Institute, UMR 6174 CNRS, \\
-  University Bourgogne Franche-Comt\'e (UBFC), Belfort, France}} \\ 
+  University Bourgogne Franche-Comt\'e, Belfort, France}} \\ 
   $^{b}${\em{Department of Computer Science, University of Babylon, Babylon, Iraq}}
 }         
          
@@ -233,16 +233,16 @@ and provides  improved coverage performance.  {\it  In the PeCO protocol,  a new
 A  WSN  consisting  of  $J$  stationary  sensor  nodes  randomly  and  uniformly
 distributed in  a bounded sensor field  is considered. The wireless  sensors are
 deployed in high density  to ensure initially a high coverage  ratio of the area
-of interest.  We  assume that all the  sensor nodes are homogeneous  in terms of
+of interest.  All  the sensor nodes are  supposed to be homogeneous  in terms of
 communication, sensing,  and processing capabilities and  heterogeneous from the
 energy provision  point of  view.  The  location information  is available  to a
 sensor node either  through hardware such as embedded GPS  or location discovery
-algorithms. We consider a Boolean disk  coverage model, which is the most widely
-used  sensor coverage  model in  the  literature, and  all sensor  nodes have  a
+algorithms. A Boolean disk coverage model,  which is the most widely used sensor
+coverage model  in the  literature, is  considered and all  sensor nodes  have a
 constant sensing range $R_s$.  Thus, all the space points within a disk centered
 at a sensor with  a radius equal to the sensing range are  said to be covered by
-this sensor.  We also assume that  the communication range $R_c$  satisfies $R_c
-\geq 2  \cdot R_s$.  In fact,  \citet{Zhang05} proved  that if  the transmission
+this sensor.  We  also assume that the communication range  $R_c$ satisfies $R_c
+\geq 2  \cdot R_s$.  In  fact, \citet{Zhang05}  proved that if  the transmission
 range fulfills the  previous hypothesis, the complete coverage of  a convex area
 implies connectivity among active nodes.
 
@@ -537,7 +537,7 @@ First, the following sets:
   sensor~$j$.
 \end{itemize}
 $I_j$ refers to the set of  coverage intervals which have been defined according
-to the  method introduced in  subsection~\ref{CI}. For a coverage  interval $i$,
+to the  method introduced in  Subsection~\ref{CI}. For a coverage  interval $i$,
 let $a^j_{ik}$ denote  the indicator function of whether  sensor~$k$ is involved
 in coverage interval~$i$ of sensor~$j$, that is:
 \begin{equation}
@@ -748,7 +748,7 @@ be consistent  with the  use of  a sensor  node based  on Atmels  AVR ATmega103L
 microcontroller (6~MHz)  having a MIPS rate  equal to 6, the  original execution
 time  on  the  laptop  is multiplied  by  2944.2  $\left(\frac{35330}{2}  \times
 \frac{1}{6} \right)$.  Energy  consumption is calculated according  to the power
-consumption  values,  in  milliWatt  per  second,  given  in  Table~\ref{tab:EC}
+consumption  values,  in  milliWatt  per  second,  given  in  Table~\ref{tab:EC}.
 based on the energy model proposed in \citep{ChinhVu}.
 
 \begin{table}[h]
@@ -757,7 +757,7 @@ based on the energy model proposed in \citep{ChinhVu}.
 \label{tab:EC}
 \begin{tabular}{|l||cccc|}
   \hline
-  {\bf Sensor status} & MCU & Radio & Sensor & {\it Power (mW)} \\
+  {\bf Sensor status} & MCU & Radio & Sensing & {\it Power (mW)} \\
   \hline
   LISTENING & On & On & On & 20.05 \\
   ACTIVE & On & Off & On & 9.72 \\
@@ -807,13 +807,13 @@ Figure~\ref{figure5} shows  the average  coverage ratio  for 200  deployed nodes
 obtained with the four protocols. DESK, GAF, and DiLCO provide a slightly better
 coverage ratio with respectively 99.99\%,  99.91\%, and 99.02\%, compared to the
 98.76\% produced by PeCO for the first periods.  This is due to the fact that at
-the beginning LiCO and PeCO protocols put to sleep status more redundant sensors
-(which slightly decreases  the coverage ratio), while the  three other protocols
-activate more sensor  nodes. Later, when the number of  periods is beyond~70, it
-clearly appears that PeCO provides a  better coverage ratio and keeps a coverage
-ratio greater than 50\%  for longer periods (15 more compared  to DiLCO, 40 more
-compared to DESK). The energy saved by  PeCO in the early periods allows later a
-substantial increase of the coverage performance.
+the  beginning DiLCO  and  PeCO protocols  put to  sleep  status more  redundant
+sensors  (which slightly  decreases the  coverage  ratio), while  the two  other
+protocols  activate more  sensor nodes.  Later, when  the number  of periods  is
+beyond~70, it  clearly appears that  PeCO provides  a better coverage  ratio and
+keeps a coverage ratio greater than 50\% for longer periods (15 more compared to
+DiLCO, 40 more compared to DESK). The  energy saved by PeCO in the early periods
+allows later a substantial increase of the coverage performance.
 
 \parskip 0pt    
 \begin{figure}[h!]
@@ -977,7 +977,7 @@ views.  Finally,  it would  be interesting  to implement  PeCO protocol  using a
 sensor-testbed to evaluate it in real world applications.
 
 
-\subsection{Acknowledgements}
+\subsection*{Acknowledgements}
 The  authors  are   deeply  grateful  to  the  anonymous   reviewers  for  their
 constructive advice,  which improved the  technical quality  of the paper.  As a
 Ph.D.   student, Ali  Kadhum IDREES  would  like to  gratefully acknowledge  the