]> AND Private Git Repository - LiCO.git/blobdiff - PeCO-EO/articleeo.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ok
[LiCO.git] / PeCO-EO / articleeo.tex
index 317f168834bde1e4ec5a54b8792e7a37b4c96d8c..5ba7f55932dd982a40e034a21050950216875f02 100644 (file)
@@ -865,9 +865,7 @@ keeping a greater coverage ratio as shown in Figure \ref{figure5}.
   sensor nodes inside each  small fixed grid and thus permits to  extend the life of
   sensors in  each grid  fairly but  in the same  time turn  on large  number of
   sensors during sensing  that lead later to quickly  deplete sensor's batteries
-  together.
-
-  After that  GAF  provide  less energy  saving  compared with  other
+  together. After that  GAF  provide  less energy  saving  compared with  other
   approaches because of the large number of dead nodes. DESK algorithm shows less
   energy saving compared with other approaches  due to activate a large number of
   sensors during the  sensing. DiLCO protocol provides less  energy saving ratio
@@ -938,16 +936,17 @@ time, and the lifetime with a coverage over 50\% is far longer than with 95\%.
 \end{figure} 
 
 Figure~\ref{figure9} compares the lifetime coverage  of the DiLCO and PeCO protocols
-for  different   coverage  ratios.   We  denote  by   Protocol/50,  Protocol/80,
+for  different   coverage  ratios.   We  denote  by   Protocol/70,  Protocol/80,
 Protocol/85, Protocol/90,  and Protocol/95 the  amount of time during  which the
-network  can satisfy  an  area  coverage greater  than  $50\%$, $80\%$,  $85\%$,
+network  can satisfy  an  area  coverage greater  than  $70\%$, $80\%$,  $85\%$,
 $90\%$, and  $95\%$ respectively,  where the  term Protocol  refers to  DiLCO or
 PeCO.  \textcolor{blue}{Indeed there are applications that do not require a 100\% coverage of the
 area to be  monitored. For example, forest
 fire application might require complete coverage
-in summer seasons while only requires 80$\%$ of the area to be covered in rainy seasons \cite{li2011transforming}. As another example, birds habit study requires only 70$\%$-coverage at nighttime when the birds are sleeping while requires 100$\%$-coverage at daytime when the birds are active \cite{vu2009universal}. Mudflows monitoring applications may require part of the area to be covered in sunny days. Thus, to extend network lifetime, the coverage quality can be decreased if it is acceptable\cite{wang2014keeping}}. PeCO might be  an interesting method since  it achieves a good balance  between a high level  coverage ratio  and network  lifetime. PeCO
-always  outperforms DiLCO  for the  three  lower coverage  ratios, moreover  the
-improvements grow  with the network  size. \textcolor{blue}{DiLCO outperforms PeCO when the coverage ratio is required to be $>90\%$, but PeCo extends the network lifetime significantly when coverage ratio can be relaxed.}
+in summer seasons while only require 80$\%$ of the area to be covered in rainy seasons~\citep{li2011transforming}. As another example, birds habit study requires only 70$\%$-coverage at nighttime when the birds are sleeping while requires 100$\%$-coverage at daytime when the birds are active~\citep{1279193}. 
+%Mudflows monitoring applications may require part of the area to be covered in sunny days. Thus, to extend network lifetime, the coverage quality can be decreased if it is acceptable~\citep{wang2014keeping}}. 
+ PeCO always  outperforms DiLCO  for the  three  lower coverage  ratios, moreover  the
+improvements grow  with the network  size. DiLCO outperforms PeCO when the coverage ratio is required to be $>90\%$, but PeCo extends the network lifetime significantly when coverage ratio can be relaxed.}
 %DiLCO  is better for  coverage ratios near 100\%, but  in that case PeCO  is not ineffective for  the smallest network sizes.
 
 \begin{figure}[h!]