\begin{array}{ll}
\min \sum_{j \in S} \sum_{i \in I_j} (\alpha^j_i ~ M^j_i + \beta^j_i ~ V^j_i )&\\
\textrm{subject to :}&\\
-\sum_{k \in A} ( a^j_{ik} ~ X_{k}) + M^j_i = l \quad \forall i \in I_j, \forall j \in S\\
-\sum_{k \in A} ( a^j_{ik} ~ X_{k}) - V^j_i = l \quad \forall i \in I_j, \forall j \in S\\
+\sum_{k \in A} ( a^j_{ik} ~ X_{k}) + M^j_i \geq l \quad \forall i \in I_j, \forall j \in S\\
+\sum_{k \in A} ( a^j_{ik} ~ X_{k}) - V^j_i \leq l \quad \forall i \in I_j, \forall j \in S\\
X_{k} \in \{0,1\}, \forall k \in A
+M^j_i, V^j_i \in \mathbb{R}^{+}
\end{array}
\right.
\end{equation}