-\textcolor{blue}{In this experiment, we consider an Energy Saving Ratio (see Figure~\ref{fig5}) for 200 deployed nodes.
-The longer the ratio is, the more redundant sensor nodes are switched off, and consequently the longer the network may live. }
+%\textcolor{blue}{In this experiment, we study the energy saving ratio, see Figure~\ref{fig5}, for 200 deployed nodes.
+%The larger the ratio is, the more redundant sensor nodes are switched off, and consequently the longer the network may liv%e. }
+
+\textcolor{blue}{The simulation results show that our protocol PeCO allows to
+ efficiently save energy by turning off some sensors during the sensing phase.
+ As shown in Figure~\ref{fig5}, GAF provides better energy saving than PeCO for
+ the first fifty rounds, because GAF balances the energy consumption among
+ sensor nodes inside each small fixed grid and thus permits to extend the life of
+ sensors in each grid fairly but in the same time turn on large number of
+ sensors during sensing that lead later to quickly deplete sensor's batteries
+ together. After that GAF provide less energy saving compared with other
+ approaches because of the large number of dead nodes. DESK algorithm shows less
+ energy saving compared with other approaches due to activate a large number of
+ sensors during the sensing. DiLCO protocol provides less energy saving ratio
+ compared with PeCO because it generally activate a larger number of sensor
+ nodes during sensing. Note that again as the number of rounds increases PeCO
+ becomes the most performing one, since it consumes less energy compared with
+ other approaches.}