-In this algorithm, K.CurrentSize and K.PreviousSize refer to the current size
-and the previous size of the subnetwork in the subregion respectively. That
-means the number of sensor nodes which are still alive. Initially, the sensor
-node checks its remaining energy $RE_k$, which must be greater than a threshold
-$E_{th}$ in order to participate in the current period. Each sensor node
-determines its position and its subregion using an embedded GPS or a location
-discovery algorithm. After that, all the sensors collect position coordinates,
-remaining energy, sensor node ID, and the number of its one-hop live neighbors
-during the information exchange. The sensors inside a same region cooperate to
-elect a leader. The selection criteria for the leader, in order of priority,
-are: larger number of neighbors, larger remaining energy, and then in case of
-equality, larger index. Once chosen, the leader collects information to
-formulate and solve the integer program which allows to construct the set of
-active sensors in the sensing stage.
+In this algorithm, K.CurrentSize and K.PreviousSize respectively represent the
+current number and the previous number of alive nodes in the subnetwork of the
+subregion. Initially, the sensor node checks its remaining energy $RE_k$, which
+must be greater than a threshold $E_{th}$ in order to participate in the current
+period. Each sensor node determines its position and its subregion using an
+embedded GPS or a location discovery algorithm. After that, all the sensors
+collect position coordinates, remaining energy, sensor node ID, and the number
+of their one-hop live neighbors during the information exchange. The sensors
+inside a same region cooperate to elect a leader. The selection criteria for the
+leader, in order of priority, are: larger number of neighbors, larger remaining
+energy, and then in case of equality, larger index. Once chosen, the leader
+collects information to formulate and solve the integer program which allows to
+construct the set of active sensors in the sensing stage.