-%We defined some parameters, which are related to our optimization model. In our model, we consider binary variables $X_{k}$, which determine the activation of sensor $k$ in the sensing round $k$. .
-\noindent We consider binary variables $X_{k}$ ($X_k=1$ if the sensor $k$ is active or 0 otherwise), which determine the activation of sensor $k$ in the sensing phase. We define the integer variable $M^j_i$ which measures the undercoverage for the coverage interval $i$ for sensor $j$. In the same way, we define the integer variable $V^j_i$, which measures the overcoverage for the coverage interval $i$ for sensor $j$. If we decide to sustain a level of coverage equal to $l$ all along the perimeter of the sensor $j$, we have to ensure that at least $l$ sensors involved in each coverage interval $i$ ($i \in I_j$) of sensor $j$ are active. According to the previous notations, the number of active sensors in the coverage interval $i$ of sensor $j$ is given by $\sum_{k \in K} a^j_{ik} X_k$. To extend the network lifetime, the objective is to active a minimal number of sensors in each period to ensure the desired coverage level. As the number of alive sensors decreases, it becomes impossible to satisfy the level of coverage for all covergae intervals. We uses variables $M^j_i$ and $V^j_i$ as a measure of the deviation between the desired number of active sensors in a coverage interval and the effective number of active sensors. And we try to minimize these deviations, first to force the activation of a minimal number of sensors to ensure the desired coverage level, and if the desired level can not be completely satisfied, to reach a coverage level as close as possible that the desired one.
-
-
+%We defined some parameters, which are related to our optimization model. In our model, we consider binary variables $X_{k}$, which determine the activation of sensor $k$ in the sensing round $k$. .
+Second, we define several binary and integer variables. Hence, each binary
+variable $X_{k}$ determines the activation of sensor $k$ in the sensing phase
+($X_k=1$ if the sensor $k$ is active or 0 otherwise). $M^j_i$ is an integer
+variable which measures the undercoverage for the coverage interval $i$
+corresponding to sensor~$j$. In the same way, the overcoverage for the same
+coverage interval is given by the variable $V^j_i$.
+
+If we decide to sustain a level of coverage equal to $l$ all along the perimeter
+of sensor $j$, we have to ensure that at least $l$ sensors involved in each
+coverage interval $i \in I_j$ of sensor $j$ are active. According to the
+previous notations, the number of active sensors in the coverage interval $i$ of
+sensor $j$ is given by $\sum_{k \in A} a^j_{ik} X_k$. To extend the network
+lifetime, the objective is to activate a minimal number of sensors in each
+period to ensure the desired coverage level. As the number of alive sensors
+decreases, it becomes impossible to reach the desired level of coverage for all
+coverage intervals. Therefore we uses variables $M^j_i$ and $V^j_i$ as a measure
+of the deviation between the desired number of active sensors in a coverage
+interval and the effective number. And we try to minimize these deviations,
+first to force the activation of a minimal number of sensors to ensure the
+desired coverage level, and if the desired level cannot be completely satisfied,
+to reach a coverage level as close as possible to the desired one.