+\noindent In this section, we summarize some related works regarding the
+coverage problem and distinguish our LiCO protocol from the works presented in
+the literature.
+
+The most discussed coverage problems in literature can be classified into three
+types \cite{li2013survey}: area coverage \cite{Misra} where every point inside
+an area is to be monitored, target coverage \cite{yang2014novel} where the main
+objective is to cover only a finite number of discrete points called targets,
+and barrier coverage \cite{Kumar:2005}\cite{kim2013maximum} to prevent intruders
+from entering into the region of interest. In \cite{Deng2012} authors transform
+the area coverage problem to the target coverage problem taking into account the
+intersection points among disks of sensors nodes or between disk of sensor nodes
+and boundaries. In \cite{Huang:2003:CPW:941350.941367} authors prove that if the perimeters of sensors are sufficiently covered, the whole area is sufficiently covered and they provide an algorithm in $O(n d \quad log d)$ time to compute the perimeter-coverage of each sensor ($d$ the maixmum number of sensors that are neighboring to a sensor, $n$ the total number of sensors in teh network). {\it In LiCO protocol, rather than determining the level of coverage of a set of discrete points, our optimization model is based on checking the perimeter-coverage of each sensor to activate a minimal number of sensors.}
+
+The major approach to extend network lifetime while preserving coverage is to
+divide/organize the sensors into a suitable number of set covers (disjoint or
+non-disjoint), where each set completely covers a region of interest, and to
+activate these set covers successively. The network activity can be planned in
+advance and scheduled for the entire network lifetime or organized in periods,
+and the set of active sensor nodes is decided at the beginning of each period
+\cite{ling2009energy}. Active node selection is determined based on the problem
+requirements (e.g. area monitoring, connectivity, power efficiency). For
+instance, Jaggi et al. \cite{jaggi2006} address the problem of maximizing
+network lifetime by dividing sensors into the maximum number of disjoint subsets
+such that each subset can ensure both coverage and connectivity. A greedy
+algorithm is applied once to solve this problem and the computed sets are
+activated in succession to achieve the desired network lifetime. Vu
+\cite{chin2007}, Padmatvathy et al. \cite{pc10}, propose algorithms working in a
+periodic fashion where a cover set is computed at the beginning of each period.
+{\it Motivated by these works, LiCO protocol works in periods, where each
+ period contains a preliminary phase for information exchange and decisions,
+ followed by a sensing phase where one cover set is in charge of the sensing
+ task.}
+
+Various approaches, including centralized, or distributed algorithms, have been
+proposed to extend the network lifetime. In distributed
+algorithms~\cite{yangnovel,ChinhVu,qu2013distributed}, information is
+disseminated throughout the network and sensors decide cooperatively by
+communicating with their neighbors which of them will remain in sleep mode for a
+certain period of time. The centralized
+algorithms~\cite{cardei2005improving,zorbas2010solving,pujari2011high} always
+provide nearly or close to optimal solution since the algorithm has global view
+of the whole network. But such a method has the disadvantage of requiring high
+communication costs, since the node (located at the base station) making the
+decision needs information from all the sensor nodes in the area and the amount
+of information can be huge. {\it In order to be suitable for large-scale
+ network, in the LiCO protocol, the area of interest is divided into several
+ smaller subregions, and in each one, a node called the leader is in charge for
+ selecting the active sensors for the current period.}
+
+A large variety of coverage scheduling algorithms has been developed. Many of
+the existing algorithms, dealing with the maximization of the number of cover
+sets, are heuristics. These heuristics involve the construction of a cover set
+by including in priority the sensor nodes which cover critical targets, that is
+to say targets that are covered by the smallest number of sensors
+\cite{berman04,zorbas2010solving}. Other approaches are based on mathematical
+programming formulations~\cite{cardei2005energy,5714480,pujari2011high,Yang2014}
+and dedicated techniques (solving with a branch-and-bound algorithms available
+in optimization solver). The problem is formulated as an optimization problem
+(maximization of the lifetime or number of cover sets) under target coverage and
+energy constraints. Column generation techniques, well-known and widely
+practiced techniques for solving linear programs with too many variables, have
+also been
+used~\cite{castano2013column,rossi2012exact,deschinkel2012column}. {\it In LiCO
+ protocol, each leader, in each subregion, solves an integer program with
+the double objective consisting in minimizing the overcoverage and the
+ undercoverage of the perimeter of each sensor.
+
+}
+
+
+%\noindent Recently, the coverage problem has been received a high attention, which concentrates on how the physical space could be well monitored after the deployment. Coverage is one of the Quality of Service (QoS) parameters in WSNs, which is highly concerned with power depletion~\cite{zhu2012survey}. Most of the works about the coverage protocols have been suggested in the literature focused on three types of the coverage in WSNs~\cite{mulligan2010coverage}: the first, area coverage means that each point in the area of interest within the sensing range of at least one sensor node; the second, target coverage in which a fixed set of targets need to be monitored; the third, barrier coverage refers to detect the intruders crossing a boundary of WSN. The work in this paper emphasized on the area coverage, so, some area coverage protocols have been reviewed in this section, and the shortcomings of reviewed approaches are being summarized.
+
+%The problem of k-coverage in WSNs was addressed~\cite{ammari2012centralized}. It mathematically formulated and the spacial sensor density for full k-coverage determined, where the relation between the communication range and the sensing range constructed by this work to retain the k-coverage and connectivity in WSN. After that, a four configuration protocols have proposed for treating the k-coverage in WSNs.
+
+%In~\cite{rebai2014branch}, the problem of full grid coverage is formulated using two integer linear programming models: the first, a model that takes into account only the overall coverage constraint; the second, both the connectivity and the full grid coverage constraints have taken into consideration. This work did not take into account the energy constraint.
+
+%Li et al.~\cite{li2011transforming} presented a framework to convert any complete coverage problem to a partial coverage one with any coverage ratio by means of executing a complete coverage algorithm to find a full coverage sets with virtual radii and transforming the coverage sets to a partial coverage sets by adjusting sensing radii. The properties of the original algorithms can be maintained by this framework and the transformation process has a low execution time.
+
+%The authors in~\cite{liu2014generalized} explained that in some applications of WSNs such as structural health monitoring (SHM) and volcano monitoring, the traditional coverage model which is a geographic area defined for individual sensors is not always valid. For this reason, they define a generalized coverage model, which is not need to have the coverage area of individual nodes, but only based on a function to determine whether a set of
+%sensor nodes is capable of satisfy the requested monitoring task for a certain area. They have proposed two approaches to divide the deployed nodes into suitable cover sets, which can be used to prolong the network lifetime.