]> AND Private Git Repository - LiCO.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
changement de styme, suppression de us, our, we
authorKarine Deschinkel <kdeschin@grappa.iut-bm.univ-fcomte.fr>
Tue, 5 Jan 2016 13:11:06 +0000 (14:11 +0100)
committerKarine Deschinkel <kdeschin@grappa.iut-bm.univ-fcomte.fr>
Tue, 5 Jan 2016 13:11:06 +0000 (14:11 +0100)
12 files changed:
PeCO-EO/.directory
PeCO-EO/ESR.eps [deleted file]
PeCO-EO/articleeo.aux
PeCO-EO/articleeo.log
PeCO-EO/articleeo.pdf
PeCO-EO/articleeo.tex
PeCO-EO/articleeo.tex~
PeCO-EO/figure7a.eps [deleted file]
PeCO-EO/figure7b.eps [deleted file]
PeCO-EO/figure8a.eps
PeCO-EO/figure8b.eps
PeCO-EO/figure9.eps [deleted file]

index e84f1b15561eeae01d6420c01e143eddf4945a74..8478e4979cf35f833a2da826ed7ce487d7279f03 100644 (file)
@@ -1,4 +1,3 @@
 [Dolphin]
 [Dolphin]
-Timestamp=2015,6,23,15,50,47
+Timestamp=2015,9,29,14,46,5
 Version=3
 Version=3
-ViewMode=1
diff --git a/PeCO-EO/ESR.eps b/PeCO-EO/ESR.eps
deleted file mode 100644 (file)
index ee607d4..0000000
+++ /dev/null
@@ -1,1460 +0,0 @@
-%!PS-Adobe-2.0 EPSF-2.0
-%%BoundingBox: 53 53 536 402
-%%HiResBoundingBox: 54 53.5 535 401.5
-%%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Tue Sep 22 23:49:01 2015
-%%EndComments
-% EPSF created by ps2eps 1.68
-%%BeginProlog
-save
-countdictstack
-mark
-newpath
-/showpage {} def
-/setpagedevice {pop} def
-%%EndProlog
-%%Page 1 1
-%%BeginProlog
-/gnudict 256 dict def
-gnudict begin
-%
-% The following true/false flags may be edited by hand if desired.
-% The unit line width and grayscale image gamma correction may also be changed.
-%
-/Color false def
-/Blacktext false def
-/Solid false def
-/Dashlength 1 def
-/Landscape false def
-/Level1 false def
-/Rounded false def
-/ClipToBoundingBox false def
-/SuppressPDFMark false def
-/TransparentPatterns false def
-/gnulinewidth 5.000 def
-/userlinewidth gnulinewidth def
-/Gamma 1.0 def
-/BackgroundColor {-1.000 -1.000 -1.000} def
-%
-/vshift -36 def
-/dl1 {
-  10.0 Dashlength mul mul
-  Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if
-} def
-/dl2 {
-  10.0 Dashlength mul mul
-  Rounded { currentlinewidth 0.75 mul add } if
-} def
-/hpt_ 31.5 def
-/vpt_ 31.5 def
-/hpt hpt_ def
-/vpt vpt_ def
-/doclip {
-  ClipToBoundingBox {
-    newpath 50 50 moveto 554 50 lineto 554 410 lineto 50 410 lineto closepath
-    clip
-  } if
-} def
-%
-% Gnuplot Prolog Version 4.4 (August 2010)
-%
-%/SuppressPDFMark true def
-%
-/M {moveto} bind def
-/L {lineto} bind def
-/R {rmoveto} bind def
-/V {rlineto} bind def
-/N {newpath moveto} bind def
-/Z {closepath} bind def
-/C {setrgbcolor} bind def
-/f {rlineto fill} bind def
-/g {setgray} bind def
-/Gshow {show} def   % May be redefined later in the file to support UTF-8
-/vpt2 vpt 2 mul def
-/hpt2 hpt 2 mul def
-/Lshow {currentpoint stroke M 0 vshift R 
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R 
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
-  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def
-/DL {Color {setrgbcolor Solid {pop []} if 0 setdash}
- {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def
-/BL {stroke userlinewidth 2 mul setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-/AL {stroke userlinewidth 2 div setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-/UL {dup gnulinewidth mul /userlinewidth exch def
-       dup 1 lt {pop 1} if 10 mul /udl exch def} def
-/PL {stroke userlinewidth setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-3.8 setmiterlimit
-% Default Line colors
-/LCw {1 1 1} def
-/LCb {0 0 0} def
-/LCa {0 0 0} def
-/LC0 {1 0 0} def
-/LC1 {0 1 0} def
-/LC2 {0 0 1} def
-/LC3 {1 0 1} def
-/LC4 {0 1 1} def
-/LC5 {1 1 0} def
-/LC6 {0 0 0} def
-/LC7 {1 0.3 0} def
-/LC8 {0.5 0.5 0.5} def
-% Default Line Types
-/LTw {PL [] 1 setgray} def
-/LTb {BL [] LCb DL} def
-/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def
-/LT0 {PL [] LC0 DL} def
-/LT1 {PL [4 dl1 2 dl2] LC1 DL} def
-/LT2 {PL [2 dl1 3 dl2] LC2 DL} def
-/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def
-/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def
-/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def
-/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def
-/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def
-/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def
-/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def
-/Dia {stroke [] 0 setdash 2 copy vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath stroke
-  Pnt} def
-/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V
-  currentpoint stroke M
-  hpt neg vpt neg R hpt2 0 V stroke
- } def
-/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath stroke
-  Pnt} def
-/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M
-  hpt2 vpt2 neg V currentpoint stroke M
-  hpt2 neg 0 R hpt2 vpt2 V stroke} def
-/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath stroke
-  Pnt} def
-/Star {2 copy Pls Crs} def
-/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath fill} def
-/TriUF {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath fill} def
-/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath stroke
-  Pnt} def
-/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath fill} def
-/DiaF {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath fill} def
-/Pent {stroke [] 0 setdash 2 copy gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath stroke grestore Pnt} def
-/PentF {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath fill grestore} def
-/Circle {stroke [] 0 setdash 2 copy
-  hpt 0 360 arc stroke Pnt} def
-/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def
-/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def
-/C1 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C2 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C3 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C4 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 180 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C5 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc
-       2 copy moveto
-       2 copy vpt 180 270 arc closepath fill
-       vpt 0 360 arc} bind def
-/C6 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C7 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C8 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 270 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C9 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 270 450 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
-       2 copy moveto
-       2 copy vpt 90 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C11 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 180 arc closepath fill
-       2 copy moveto
-       2 copy vpt 270 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C12 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 180 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C13 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc closepath fill
-       2 copy moveto
-       2 copy vpt 180 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C14 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 360 arc closepath fill
-       vpt 0 360 arc} bind def
-/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
-       neg 0 rlineto closepath} bind def
-/Square {dup Rec} bind def
-/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def
-/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def
-/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def
-/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
-/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def
-/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
-/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill
-       exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
-/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def
-/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
-       2 copy vpt Square fill Bsquare} bind def
-/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def
-/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def
-/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
-       Bsquare} bind def
-/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
-       Bsquare} bind def
-/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def
-/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
-       2 copy vpt Square fill Bsquare} bind def
-/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
-       2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
-/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def
-/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def
-/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def
-/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def
-/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def
-/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def
-/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def
-/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def
-/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def
-/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def
-/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def
-/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def
-/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def
-/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def
-/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def
-/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def
-/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def
-/DiaE {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath stroke} def
-/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath stroke} def
-/TriUE {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath stroke} def
-/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath stroke} def
-/PentE {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath stroke grestore} def
-/CircE {stroke [] 0 setdash 
-  hpt 0 360 arc stroke} def
-/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def
-/DiaW {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V Opaque stroke} def
-/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V Opaque stroke} def
-/TriUW {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V Opaque stroke} def
-/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V Opaque stroke} def
-/PentW {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  Opaque stroke grestore} def
-/CircW {stroke [] 0 setdash 
-  hpt 0 360 arc Opaque stroke} def
-/BoxFill {gsave Rec 1 setgray fill grestore} def
-/Density {
-  /Fillden exch def
-  currentrgbcolor
-  /ColB exch def /ColG exch def /ColR exch def
-  /ColR ColR Fillden mul Fillden sub 1 add def
-  /ColG ColG Fillden mul Fillden sub 1 add def
-  /ColB ColB Fillden mul Fillden sub 1 add def
-  ColR ColG ColB setrgbcolor} def
-/BoxColFill {gsave Rec PolyFill} def
-/PolyFill {gsave Density fill grestore grestore} def
-/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def
-%
-% PostScript Level 1 Pattern Fill routine for rectangles
-% Usage: x y w h s a XX PatternFill
-%      x,y = lower left corner of box to be filled
-%      w,h = width and height of box
-%        a = angle in degrees between lines and x-axis
-%       XX = 0/1 for no/yes cross-hatch
-%
-/PatternFill {gsave /PFa [ 9 2 roll ] def
-  PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
-  PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
-  gsave 1 setgray fill grestore clip
-  currentlinewidth 0.5 mul setlinewidth
-  /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
-  0 0 M PFa 5 get rotate PFs -2 div dup translate
-  0 1 PFs PFa 4 get div 1 add floor cvi
-       {PFa 4 get mul 0 M 0 PFs V} for
-  0 PFa 6 get ne {
-       0 1 PFs PFa 4 get div 1 add floor cvi
-       {PFa 4 get mul 0 2 1 roll M PFs 0 V} for
- } if
-  stroke grestore} def
-%
-/languagelevel where
- {pop languagelevel} {1} ifelse
- 2 lt
-       {/InterpretLevel1 true def}
-       {/InterpretLevel1 Level1 def}
- ifelse
-%
-% PostScript level 2 pattern fill definitions
-%
-/Level2PatternFill {
-/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8}
-       bind def
-/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} 
->> matrix makepattern
-/Pat1 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke
-       0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke}
->> matrix makepattern
-/Pat2 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L
-       8 8 L 8 0 L 0 0 L fill}
->> matrix makepattern
-/Pat3 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L
-       0 12 M 12 0 L stroke}
->> matrix makepattern
-/Pat4 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L
-       0 -4 M 12 8 L stroke}
->> matrix makepattern
-/Pat5 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L
-       0 12 M 8 -4 L 4 12 M 10 0 L stroke}
->> matrix makepattern
-/Pat6 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L
-       0 -4 M 8 12 L 4 -4 M 10 8 L stroke}
->> matrix makepattern
-/Pat7 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L
-       12 0 M -4 8 L 12 4 M 0 10 L stroke}
->> matrix makepattern
-/Pat8 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L
-       -4 0 M 12 8 L -4 4 M 8 10 L stroke}
->> matrix makepattern
-/Pat9 exch def
-/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def
-/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def
-/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def
-/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def
-/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def
-/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def
-/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def
-} def
-%
-%
-%End of PostScript Level 2 code
-%
-/PatternBgnd {
-  TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse
-} def
-%
-% Substitute for Level 2 pattern fill codes with
-% grayscale if Level 2 support is not selected.
-%
-/Level1PatternFill {
-/Pattern1 {0.250 Density} bind def
-/Pattern2 {0.500 Density} bind def
-/Pattern3 {0.750 Density} bind def
-/Pattern4 {0.125 Density} bind def
-/Pattern5 {0.375 Density} bind def
-/Pattern6 {0.625 Density} bind def
-/Pattern7 {0.875 Density} bind def
-} def
-%
-% Now test for support of Level 2 code
-%
-Level1 {Level1PatternFill} {Level2PatternFill} ifelse
-%
-/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
-dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
-currentdict end definefont pop
-%
-% Encoding for ISO-8859-1 (also called Latin1)
-%
-/reencodeISO {
-dup dup findfont dup length dict begin
-{ 1 index /FID ne { def }{ pop pop } ifelse } forall
-currentdict /CharStrings known {
-       CharStrings /Idieresis known {
-               /Encoding ISOLatin1Encoding def } if
-} if
-currentdict end definefont
-} def
-/ISOLatin1Encoding [
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright
-/parenleft/parenright/asterisk/plus/comma/minus/period/slash
-/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon
-/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N
-/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright
-/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m
-/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve
-/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut
-/ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar
-/section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot
-/hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior
-/acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine
-/guillemotright/onequarter/onehalf/threequarters/questiondown
-/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla
-/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex
-/Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis
-/multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute
-/Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis
-/aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave
-/iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex
-/otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis
-/yacute/thorn/ydieresis
-] def
-/MFshow {
-   { dup 5 get 3 ge
-     { 5 get 3 eq {gsave} {grestore} ifelse }
-     {dup dup 0 get findfont exch 1 get scalefont setfont
-     [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6
-     get exch 4 get {Gshow} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq
-     {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5
-     get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div
-     dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get
-     show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop
-     pop aload pop M} ifelse }ifelse }ifelse }
-     ifelse }
-   forall} def
-/Gswidth {dup type /stringtype eq {stringwidth} {pop (n) stringwidth} ifelse} def
-/MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse }
- {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont
-     6 get Gswidth pop add} {pop} ifelse} ifelse} forall} def
-/MLshow { currentpoint stroke M
-  0 exch R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/MRshow { currentpoint stroke M
-  exch dup MFwidth neg 3 -1 roll R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/MCshow { currentpoint stroke M
-  exch dup MFwidth -2 div 3 -1 roll R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/XYsave    { [( ) 1 2 true false 3 ()] } bind def
-/XYrestore { [( ) 1 2 true false 4 ()] } bind def
-/Helvetica reencodeISO def
-Level1 SuppressPDFMark or 
-{} {
-/SDict 10 dict def
-systemdict /pdfmark known not {
-  userdict /pdfmark systemdict /cleartomark get put
-} if
-SDict begin [
-  /Title ()
-  /Subject (gnuplot plot)
-  /Creator (gnuplot 4.6 patchlevel 0)
-  /Author (ali)
-%  /Producer (gnuplot)
-%  /Keywords ()
-  /CreationDate (Tue Sep 22 23:49:01 2015)
-  /DOCINFO pdfmark
-end
-} ifelse
-end
-%%EndProlog
-%%Page: 1 1
-gnudict begin
-gsave
-doclip
-50 50 translate
-0.100 0.100 scale
-0 setgray
-newpath
-(Helvetica) findfont 110 scalefont setfont
-BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {gsave BackgroundColor C clippath fill grestore} if
-1.000 UL
-LTb
-539 352 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 352 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 0)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 664 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 664 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 10)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 975 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 975 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 20)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 1287 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 1287 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 30)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 1598 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 1598 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 40)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 1910 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 1910 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 50)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 2222 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 2222 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 60)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 2533 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 2533 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 70)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 2845 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 2845 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 80)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 3156 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 3156 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 90)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 3468 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 3468 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 100)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-539 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 0)]
-] -36.7 MCshow
-1.000 UL
-LTb
-886 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-886 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 10)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1233 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1233 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 20)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1580 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1580 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 30)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1927 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1927 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 40)]
-] -36.7 MCshow
-1.000 UL
-LTb
-2274 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-2274 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 50)]
-] -36.7 MCshow
-1.000 UL
-LTb
-2621 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-2621 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 60)]
-] -36.7 MCshow
-1.000 UL
-LTb
-2968 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-2968 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 70)]
-] -36.7 MCshow
-1.000 UL
-LTb
-3314 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-3314 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 80)]
-] -36.7 MCshow
-1.000 UL
-LTb
-3661 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-3661 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 90)]
-] -36.7 MCshow
-1.000 UL
-LTb
-4008 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-4008 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 100)]
-] -36.7 MCshow
-1.000 UL
-LTb
-4355 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-4355 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 110)]
-] -36.7 MCshow
-1.000 UL
-LTb
-4702 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-4702 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 120)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1.000 UL
-LTb
-539 3468 N
-539 352 L
-4302 0 V
-0 3116 V
--4302 0 V
-Z stroke
-LCb setrgbcolor
-88 1910 M
-currentpoint gsave translate -270 rotate 0 0 moveto
-[ [(Helvetica) 110.0 0.0 true true 0 (Energy Saving Ratio \(%\) )]
-] -36.7 MCshow
-grestore
-LTb
-LCb setrgbcolor
-2690 77 M
-[ [(Helvetica) 110.0 0.0 true true 0 (Number of Periods)]
-] -36.7 MCshow
-LTb
-1.000 UP
-1.000 UL
-LTb
-% Begin plot #1
-1.000 UP
-2.000 UL
-LT0
-0.00 0.55 0.55 C LCb setrgbcolor
-4382 3351 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
-] -36.7 MRshow
-LT0
-0.00 0.55 0.55 C 4448 3351 M
-327 0 V
-574 3468 M
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 -13 V
-34 -95 V
-35 -75 V
-35 -78 V
-34 -79 V
-35 -51 V
-35 -22 V
-35 -3 V
-34 -2 V
-35 -2 V
-35 -2 V
-34 -2 V
-35 -4 V
-35 -5 V
-34 -17 V
-35 -39 V
-35 -73 V
-35 -78 V
-34 -89 V
-35 -93 V
-35 -74 V
-34 -50 V
-35 -35 V
-35 -20 V
-34 -12 V
-35 -4 V
-35 -4 V
-34 -8 V
-35 -15 V
-35 -22 V
-35 -50 V
-34 -67 V
-35 -97 V
-35 -92 V
-34 -86 V
-35 -76 V
-35 -71 V
-34 -55 V
-35 -47 V
-35 -25 V
-34 -17 V
-35 -11 V
-35 -17 V
-35 -16 V
-34 -34 V
-35 -46 V
-35 -68 V
-34 -78 V
-35 -84 V
-35 -78 V
-34 -88 V
-35 -65 V
-35 -63 V
-34 -40 V
-35 -28 V
-35 -32 V
-35 -20 V
-34 -20 V
-35 -19 V
-35 -45 V
-34 -36 V
-35 -51 V
-35 -50 V
-34 -50 V
-35 -33 V
-35 -35 V
-34 -43 V
-35 -26 V
-35 -20 V
-35 -18 V
-34 -12 V
-35 -14 V
-35 -9 V
-34 -13 V
-35 -7 V
-35 -13 V
-34 -10 V
-35 -13 V
-35 -10 V
-35 -11 V
-34 -9 V
-35 -6 V
-35 -7 V
-34 -3 V
-35 -1 V
-35 -1 V
-34 -2 V
-35 -3 V
-35 0 V
-34 -2 V
-stroke 4112 359 M
-35 0 V
-35 -1 V
-35 -2 V
-34 0 V
-35 -1 V
-35 -1 V
-34 0 V
-35 -1 V
-35 0 V
-34 0 V
-35 0 V
-35 -1 V
-34 0 V
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-574 3468 TriUF
-747 3468 TriUF
-921 3468 TriUF
-1094 3285 TriUF
-1268 3052 TriUF
-1441 3040 TriUF
-1615 2828 TriUF
-1788 2487 TriUF
-1961 2439 TriUF
-2135 2188 TriUF
-2308 1808 TriUF
-2482 1691 TriUF
-2655 1449 TriUF
-2829 1071 TriUF
-3002 931 TriUF
-3176 730 TriUF
-3349 543 TriUF
-3523 470 TriUF
-3696 414 TriUF
-3870 371 TriUF
-4043 361 TriUF
-4217 356 TriUF
-4390 353 TriUF
-4563 352 TriUF
-4737 352 TriUF
-4611 3351 TriUF
-% End plot #1
-% Begin plot #2
-1.000 UP
-2.000 UL
-LT1
-0.00 0.39 0.00 C LCb setrgbcolor
-4382 3241 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
-] -36.7 MRshow
-LT1
-0.00 0.39 0.00 C 4448 3241 M
-327 0 V
-574 3468 M
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 -98 V
-34 -194 V
-35 -159 V
-35 -177 V
-34 -183 V
-35 -124 V
-35 -9 V
-35 0 V
-34 -1 V
-35 0 V
-35 -1 V
-34 0 V
-35 -9 V
-35 -30 V
-34 -64 V
-35 -96 V
-35 -136 V
-35 -146 V
-34 -144 V
-35 -107 V
-35 -74 V
-34 -57 V
-35 -28 V
-35 -8 V
-34 -3 V
-35 -10 V
-35 -24 V
-34 -41 V
-35 -60 V
-35 -84 V
-35 -89 V
-34 -102 V
-35 -124 V
-35 -91 V
-34 -83 V
-35 -58 V
-35 -51 V
-34 -33 V
-35 -31 V
-35 -29 V
-34 -44 V
-35 -52 V
-35 -63 V
-35 -76 V
-34 -73 V
-35 -28 V
-35 -14 V
-34 -3 V
-35 -5 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-stroke 4112 352 M
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-574 3468 DiaF
-747 3468 DiaF
-921 3468 DiaF
-1094 3017 DiaF
-1268 2524 DiaF
-1441 2513 DiaF
-1615 2041 DiaF
-1788 1631 DiaF
-1961 1545 DiaF
-2135 1086 DiaF
-2308 770 DiaF
-2482 551 DiaF
-2655 357 DiaF
-2829 352 DiaF
-3002 352 DiaF
-3176 352 DiaF
-3349 352 DiaF
-3523 352 DiaF
-3696 352 DiaF
-3870 352 DiaF
-4043 352 DiaF
-4217 352 DiaF
-4390 352 DiaF
-4563 352 DiaF
-4737 352 DiaF
-4611 3241 DiaF
-% End plot #2
-% Begin plot #3
-1.000 UP
-2.000 UL
-LT2
-0.50 0.00 0.00 C LCb setrgbcolor
-4382 3131 M
-[ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
-] -36.7 MRshow
-LT2
-0.50 0.00 0.00 C 4448 3131 M
-327 0 V
-574 3468 M
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 -14 V
-35 -29 V
-35 -24 V
-34 -28 V
-35 -25 V
-35 -25 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 -8 V
-35 -19 V
-35 -32 V
-35 -53 V
-34 -71 V
-35 -90 V
-35 -96 V
-34 -72 V
-35 -53 V
-35 -38 V
-34 -21 V
-35 -5 V
-35 0 V
-34 -1 V
-35 -8 V
-35 -19 V
-35 -39 V
-34 -62 V
-35 -86 V
-35 -103 V
-34 -119 V
-35 -129 V
-35 -124 V
-34 -105 V
-35 -86 V
-35 -64 V
-34 -40 V
-35 -29 V
-35 -15 V
-35 -17 V
-34 -18 V
-35 -32 V
-35 -53 V
-34 -75 V
-35 -90 V
-35 -106 V
-34 -114 V
-35 -113 V
-35 -107 V
-34 -89 V
-35 -61 V
-35 -46 V
-35 -35 V
-34 -29 V
-35 -22 V
-35 -23 V
-34 -20 V
-35 -26 V
-35 -26 V
-34 -25 V
-35 -26 V
-35 -28 V
-34 -25 V
-35 -22 V
-35 -20 V
-35 -14 V
-34 -9 V
-35 -8 V
-35 -6 V
-34 -4 V
-35 -5 V
-35 -7 V
-34 -8 V
-35 -6 V
-35 -8 V
-35 -9 V
-34 -10 V
-35 -8 V
-35 -8 V
-34 -7 V
-35 -6 V
-35 -3 V
-34 -2 V
-35 -1 V
-35 -2 V
-34 -1 V
-stroke 4112 356 M
-35 -2 V
-35 0 V
-35 -1 V
-34 -1 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-574 3468 Star
-747 3468 Star
-921 3468 Star
-1094 3425 Star
-1268 3323 Star
-1441 3323 Star
-1615 3211 Star
-1788 2829 Star
-1961 2764 Star
-2135 2550 Star
-2308 1970 Star
-2482 1736 Star
-2655 1541 Star
-2829 1011 Star
-3002 751 Star
-3176 634 Star
-3349 508 Star
-3523 451 Star
-3696 421 Star
-3870 378 Star
-4043 359 Star
-4217 353 Star
-4390 352 Star
-4563 352 Star
-4737 352 Star
-4611 3131 Star
-% End plot #3
-% Begin plot #4
-1.000 UP
-2.000 UL
-LT3
-0.00 0.00 0.55 C LCb setrgbcolor
-4382 3021 M
-[ [(Helvetica) 110.0 0.0 true true 0 (PeCO)]
-] -36.7 MRshow
-LT3
-0.00 0.00 0.55 C 4448 3021 M
-327 0 V
-574 3468 M
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 0 V
-34 0 V
-35 0 V
-35 -6 V
-34 -102 V
-35 -101 V
-35 -81 V
-34 -64 V
-35 -62 V
-35 -28 V
-35 -3 V
-34 -3 V
-35 -1 V
-35 -1 V
-34 -2 V
-35 0 V
-35 -2 V
-34 -11 V
-35 -35 V
-35 -61 V
-35 -81 V
-34 -85 V
-35 -89 V
-35 -75 V
-34 -51 V
-35 -50 V
-35 -22 V
-34 -12 V
-35 -6 V
-35 -2 V
-34 -7 V
-35 -13 V
-35 -18 V
-35 -25 V
-34 -41 V
-35 -58 V
-35 -69 V
-34 -74 V
-35 -67 V
-35 -70 V
-34 -46 V
-35 -41 V
-35 -26 V
-34 -21 V
-35 -6 V
-35 -4 V
-35 -14 V
-34 -19 V
-35 -29 V
-35 -30 V
-34 -45 V
-35 -63 V
-35 -57 V
-34 -54 V
-35 -59 V
-35 -50 V
-34 -46 V
-35 -37 V
-35 -26 V
-35 -10 V
-34 -18 V
-35 -15 V
-35 -18 V
-34 -27 V
-35 -29 V
-35 -33 V
-34 -37 V
-35 -46 V
-35 -42 V
-34 -46 V
-35 -33 V
-35 -41 V
-35 -30 V
-34 -26 V
-35 -17 V
-35 -14 V
-34 -14 V
-35 -17 V
-35 -17 V
-34 -27 V
-35 -23 V
-35 -24 V
-35 -27 V
-34 -27 V
-35 -21 V
-35 -22 V
-34 -17 V
-35 -21 V
-35 -12 V
-34 -9 V
-35 -7 V
-35 -14 V
-34 -12 V
-stroke 4112 524 M
-35 -18 V
-35 -13 V
-35 -12 V
-34 -11 V
-35 -15 V
-35 -15 V
-34 -20 V
-35 -8 V
-35 -13 V
-34 -10 V
-35 -3 V
-35 -10 V
-34 -9 V
-35 -1 V
-35 -1 V
-35 -4 V
-34 -3 V
-35 -6 V
-574 3468 CircleF
-747 3468 CircleF
-921 3468 CircleF
-1094 3259 CircleF
-1268 3021 CircleF
-1441 3014 CircleF
-1615 2824 CircleF
-1788 2474 CircleF
-1961 2425 CircleF
-2135 2270 CircleF
-2308 1944 CircleF
-2482 1846 CircleF
-2655 1709 CircleF
-2829 1426 CircleF
-3002 1289 CircleF
-3176 1167 CircleF
-3349 963 CircleF
-3523 835 CircleF
-3696 737 CircleF
-3870 616 CircleF
-4043 550 CircleF
-4217 481 CircleF
-4390 412 CircleF
-4563 367 CircleF
-4737 352 CircleF
-4611 3021 CircleF
-% End plot #4
-1.000 UL
-LTb
-539 3468 N
-539 352 L
-4302 0 V
-0 3116 V
--4302 0 V
-Z stroke
-1.000 UP
-1.000 UL
-LTb
-stroke
-grestore
-end
-showpage
-%%Trailer
-%%DocumentFonts: Helvetica
-%%Pages: 1
-%%Trailer
-cleartomark
-countdictstack
-exch sub { end } repeat
-restore
-%%EOF
index c2d59c122c966e2d533959559121349587014350..cacf3279cb89a28ff9ea047cd6c63fd269a6dc01 100644 (file)
 \citation{glpk}
 \citation{iamigo:cplex}
 \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Simulation Results}{12}}
 \citation{glpk}
 \citation{iamigo:cplex}
 \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Simulation Results}{12}}
+\newlabel{tab:EC}{{3}{12}}
 \citation{ChinhVu}
 \citation{xu2001geography}
 \citation{Idrees2}
 \citation{idrees2014coverage}
 \citation{ChinhVu}
 \citation{xu2001geography}
 \citation{Idrees2}
 \citation{idrees2014coverage}
-\newlabel{tab:EC}{{3}{13}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.1}Coverage Ratio}{13}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.2}Active Sensors Ratio}{13}}
 \newlabel{figure5}{{5}{14}}
 \newlabel{figure6}{{6}{14}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.1}Coverage Ratio}{13}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.2}Active Sensors Ratio}{13}}
 \newlabel{figure5}{{5}{14}}
 \newlabel{figure6}{{6}{14}}
-\@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.3}\leavevmode {\color  {green}Energy Saving Ratio}}{14}}
+\@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.3}Energy Saving Ratio}{14}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.4}Energy Consumption}{14}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.4}Energy Consumption}{14}}
-\newlabel{fig5}{{7}{15}}
-\newlabel{figure7}{{8}{15}}
+\newlabel{figure7}{{7}{15}}
+\newlabel{figure8}{{8}{15}}
 \citation{li2011transforming}
 \citation{1279193}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.5}Network Lifetime}{16}}
 \citation{li2011transforming}
 \citation{1279193}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.5}Network Lifetime}{16}}
-\newlabel{figure8}{{9}{16}}
-\newlabel{figure9}{{10}{17}}
+\newlabel{figure9}{{9}{16}}
+\newlabel{figure10}{{10}{17}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.6}Impact of $\alpha $ and $\beta $ on PeCO's performance}{17}}
 \newlabel{sec:Impact}{{5.2.6}{17}}
 \newlabel{my-labelx}{{4}{17}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.2.6}Impact of $\alpha $ and $\beta $ on PeCO's performance}{17}}
 \newlabel{sec:Impact}{{5.2.6}{17}}
 \newlabel{my-labelx}{{4}{17}}
index 7fad0559588eaa893b56ef8ffe4ca035182635e7..fd791af3e55e33137d6049b5ccb36d28759a2ce4 100644 (file)
@@ -1,4 +1,4 @@
-This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2013.9.3)  29 SEP 2015 11:58
+This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2013.9.3)  5 JAN 2016 14:10
 entering extended mode
  restricted \write18 enabled.
  %&-line parsing enabled.
 entering extended mode
  restricted \write18 enabled.
  %&-line parsing enabled.
@@ -328,18 +328,18 @@ subscribe by emailing sympa@lirmm.fr with 'subscribe <list> <firstname name>'
 ) (./articleeo.aux)
 \openout1 = `articleeo.aux'.
 
 ) (./articleeo.aux)
 \openout1 = `articleeo.aux'.
 
-LaTeX Font Info:    Checking defaults for OML/cmm/m/it on input line 10.
-LaTeX Font Info:    ... okay on input line 10.
-LaTeX Font Info:    Checking defaults for T1/cmr/m/n on input line 10.
-LaTeX Font Info:    ... okay on input line 10.
-LaTeX Font Info:    Checking defaults for OT1/cmr/m/n on input line 10.
-LaTeX Font Info:    ... okay on input line 10.
-LaTeX Font Info:    Checking defaults for OMS/cmsy/m/n on input line 10.
-LaTeX Font Info:    ... okay on input line 10.
-LaTeX Font Info:    Checking defaults for OMX/cmex/m/n on input line 10.
-LaTeX Font Info:    ... okay on input line 10.
-LaTeX Font Info:    Checking defaults for U/cmr/m/n on input line 10.
-LaTeX Font Info:    ... okay on input line 10.
+LaTeX Font Info:    Checking defaults for OML/cmm/m/it on input line 9.
+LaTeX Font Info:    ... okay on input line 9.
+LaTeX Font Info:    Checking defaults for T1/cmr/m/n on input line 9.
+LaTeX Font Info:    ... okay on input line 9.
+LaTeX Font Info:    Checking defaults for OT1/cmr/m/n on input line 9.
+LaTeX Font Info:    ... okay on input line 9.
+LaTeX Font Info:    Checking defaults for OMS/cmsy/m/n on input line 9.
+LaTeX Font Info:    ... okay on input line 9.
+LaTeX Font Info:    Checking defaults for OMX/cmex/m/n on input line 9.
+LaTeX Font Info:    ... okay on input line 9.
+LaTeX Font Info:    Checking defaults for U/cmr/m/n on input line 9.
+LaTeX Font Info:    ... okay on input line 9.
 
 (/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii
 [Loading MPS to PDF converter (version 2006.09.02).]
 
 (/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii
 [Loading MPS to PDF converter (version 2006.09.02).]
@@ -404,86 +404,86 @@ e
 ))
 
 LaTeX Font Warning: Font shape `OT1/cmr/m/n' in size <13> not available
 ))
 
 LaTeX Font Warning: Font shape `OT1/cmr/m/n' in size <13> not available
-(Font)              size <12> substituted on input line 25.
+(Font)              size <12> substituted on input line 20.
 
 
 LaTeX Font Warning: Font shape `OT1/cmr/bx/n' in size <13> not available
 
 
 LaTeX Font Warning: Font shape `OT1/cmr/bx/n' in size <13> not available
-(Font)              size <12> substituted on input line 25.
+(Font)              size <12> substituted on input line 20.
 
 
 LaTeX Font Warning: Font shape `OT1/cmr/bx/it' in size <13> not available
 
 
 LaTeX Font Warning: Font shape `OT1/cmr/bx/it' in size <13> not available
-(Font)              size <12> substituted on input line 25.
+(Font)              size <12> substituted on input line 20.
 
 
-LaTeX Font Info:    Try loading font information for OML+cmr on input line 25.
+LaTeX Font Info:    Try loading font information for OML+cmr on input line 20.
 (/usr/share/texlive/texmf-dist/tex/latex/base/omlcmr.fd
 File: omlcmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
 )
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <10> not available
 (/usr/share/texlive/texmf-dist/tex/latex/base/omlcmr.fd
 File: omlcmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
 )
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <10> not available
-(Font)              Font shape `OML/cmm/m/it' tried instead on input line 25.
+(Font)              Font shape `OML/cmm/m/it' tried instead on input line 20.
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <7> not available
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <7> not available
-(Font)              Font shape `OML/cmm/m/it' tried instead on input line 25.
+(Font)              Font shape `OML/cmm/m/it' tried instead on input line 20.
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <5> not available
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <5> not available
-(Font)              Font shape `OML/cmm/m/it' tried instead on input line 25.
-LaTeX Font Info:    Try loading font information for OMS+cmr on input line 25.
+(Font)              Font shape `OML/cmm/m/it' tried instead on input line 20.
+LaTeX Font Info:    Try loading font information for OMS+cmr on input line 20.
 
 (/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd
 File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
 )
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <10> not available
 
 (/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd
 File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
 )
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <10> not available
-(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 25.
+(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 20.
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <7> not available
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <7> not available
-(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 25.
+(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 20.
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <5> not available
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <5> not available
-(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 25.
-LaTeX Font Info:    Try loading font information for OMX+cmr on input line 25.
-LaTeX Font Info:    No file OMXcmr.fd. on input line 25.
+(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 20.
+LaTeX Font Info:    Try loading font information for OMX+cmr on input line 20.
+LaTeX Font Info:    No file OMXcmr.fd. on input line 20.
 
 
 LaTeX Font Warning: Font shape `OMX/cmr/m/n' undefined
 
 
 LaTeX Font Warning: Font shape `OMX/cmr/m/n' undefined
-(Font)              using `OMX/cmex/m/n' instead on input line 25.
+(Font)              using `OMX/cmex/m/n' instead on input line 20.
 
 
-LaTeX Font Info:    Try loading font information for U+msa on input line 25.
+LaTeX Font Info:    Try loading font information for U+msa on input line 20.
 (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
 File: umsa.fd 2009/06/22 v3.00 AMS symbols A
 )
 (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
 File: umsa.fd 2009/06/22 v3.00 AMS symbols A
 )
-LaTeX Font Info:    Try loading font information for U+msb on input line 25.
+LaTeX Font Info:    Try loading font information for U+msb on input line 20.
 
 (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
 File: umsb.fd 2009/06/22 v3.00 AMS symbols B
 )
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <8> not available
 
 (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
 File: umsb.fd 2009/06/22 v3.00 AMS symbols B
 )
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <8> not available
-(Font)              Font shape `OML/cmm/m/it' tried instead on input line 25.
+(Font)              Font shape `OML/cmm/m/it' tried instead on input line 20.
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <6> not available
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <6> not available
-(Font)              Font shape `OML/cmm/m/it' tried instead on input line 25.
+(Font)              Font shape `OML/cmm/m/it' tried instead on input line 20.
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <8> not available
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <8> not available
-(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 25.
+(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 20.
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <6> not available
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <6> not available
-(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 25.
-LaTeX Font Info:    Calculating math sizes for size <11> on input line 48.
+(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 20.
+LaTeX Font Info:    Calculating math sizes for size <11> on input line 42.
 
 
 LaTeX Font Warning: Font shape `OT1/cmr/m/n' in size <5.5> not available
 
 
 LaTeX Font Warning: Font shape `OT1/cmr/m/n' in size <5.5> not available
-(Font)              size <5> substituted on input line 48.
+(Font)              size <5> substituted on input line 42.
 
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <11> not available
 
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <11> not available
-(Font)              Font shape `OML/cmm/m/it' tried instead on input line 48.
+(Font)              Font shape `OML/cmm/m/it' tried instead on input line 42.
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <7.69997> not available
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <7.69997> not available
-(Font)              Font shape `OML/cmm/m/it' tried instead on input line 48.
+(Font)              Font shape `OML/cmm/m/it' tried instead on input line 42.
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <5.5> not available
 LaTeX Font Info:    Font shape `OML/cmr/m/it' in size <5.5> not available
-(Font)              Font shape `OML/cmm/m/it' tried instead on input line 48.
+(Font)              Font shape `OML/cmm/m/it' tried instead on input line 42.
 
 LaTeX Font Warning: Font shape `OML/cmm/m/it' in size <5.5> not available
 
 LaTeX Font Warning: Font shape `OML/cmm/m/it' in size <5.5> not available
-(Font)              size <5> substituted on input line 48.
+(Font)              size <5> substituted on input line 42.
 
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <11> not available
 
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <11> not available
-(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 48.
+(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 42.
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <7.69997> not available
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <7.69997> not available
-(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 48.
+(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 42.
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <5.5> not available
 LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <5.5> not available
-(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 48.
+(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 42.
 
 LaTeX Font Warning: Font shape `OMS/cmsy/m/n' in size <5.5> not available
 
 LaTeX Font Warning: Font shape `OMS/cmsy/m/n' in size <5.5> not available
-(Font)              size <5> substituted on input line 48.
+(Font)              size <5> substituted on input line 42.
 
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
 
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
@@ -563,7 +563,7 @@ Overfull \vbox (701.0pt too high) has occurred while \output is active []
  [3]
 
 LaTeX Font Warning: Font shape `OT1/cmr/bx/sc' undefined
  [3]
 
 LaTeX Font Warning: Font shape `OT1/cmr/bx/sc' undefined
-(Font)              using `OT1/cmr/bx/n' instead on input line 221.
+(Font)              using `OT1/cmr/bx/n' instead on input line 214.
 
 Package epstopdf Info: Source file: <figure1a.eps>
 (epstopdf)                    date: 2015-02-20 10:11:12
 
 Package epstopdf Info: Source file: <figure1a.eps>
 (epstopdf)                    date: 2015-02-20 10:11:12
@@ -573,13 +573,13 @@ Package epstopdf Info: Source file: <figure1a.eps>
 (epstopdf)                    size: 78307 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure1a-eps-converted-to.
 pdf figure1a.eps>
 (epstopdf)                    size: 78307 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure1a-eps-converted-to.
 pdf figure1a.eps>
-(epstopdf)             \includegraphics on input line 269.
+(epstopdf)             \includegraphics on input line 256.
 Package epstopdf Info: Output file is already uptodate.
 <figure1a-eps-converted-to.pdf, id=24, 418.56375pt x 396.48125pt>
 File: figure1a-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure1a-eps-converted-to.pdf>
 Package epstopdf Info: Output file is already uptodate.
 <figure1a-eps-converted-to.pdf, id=24, 418.56375pt x 396.48125pt>
 File: figure1a-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure1a-eps-converted-to.pdf>
-Package pdftex.def Info: figure1a-eps-converted-to.pdf used on input line 269.
+Package pdftex.def Info: figure1a-eps-converted-to.pdf used on input line 256.
 (pdftex.def)             Requested size: 213.39566pt x 202.1362pt.
 Package epstopdf Info: Source file: <figure1b.eps>
 (epstopdf)                    date: 2015-02-20 10:11:12
 (pdftex.def)             Requested size: 213.39566pt x 202.1362pt.
 Package epstopdf Info: Source file: <figure1b.eps>
 (epstopdf)                    date: 2015-02-20 10:11:12
@@ -589,14 +589,14 @@ Package epstopdf Info: Source file: <figure1b.eps>
 (epstopdf)                    size: 57181 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure1b-eps-converted-to.
 pdf figure1b.eps>
 (epstopdf)                    size: 57181 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure1b-eps-converted-to.
 pdf figure1b.eps>
-(epstopdf)             \includegraphics on input line 270.
+(epstopdf)             \includegraphics on input line 257.
 Package epstopdf Info: Output file is already uptodate.
 
 <figure1b-eps-converted-to.pdf, id=25, 385.44pt x 269.005pt>
 File: figure1b-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure1b-eps-converted-to.pdf>
 Package epstopdf Info: Output file is already uptodate.
 
 <figure1b-eps-converted-to.pdf, id=25, 385.44pt x 269.005pt>
 File: figure1b-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure1b-eps-converted-to.pdf>
-Package pdftex.def Info: figure1b-eps-converted-to.pdf used on input line 270.
+Package pdftex.def Info: figure1b-eps-converted-to.pdf used on input line 257.
 (pdftex.def)             Requested size: 213.39566pt x 148.93011pt.
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
 (pdftex.def)             Requested size: 213.39566pt x 148.93011pt.
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
@@ -655,14 +655,14 @@ Package epstopdf Info: Source file: <figure2.eps>
 (epstopdf)                    size: 138861 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure2-eps-converted-to.p
 df figure2.eps>
 (epstopdf)                    size: 138861 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure2-eps-converted-to.p
 df figure2.eps>
-(epstopdf)             \includegraphics on input line 312.
+(epstopdf)             \includegraphics on input line 299.
 Package epstopdf Info: Output file is already uptodate.
 
 <figure2-eps-converted-to.pdf, id=41, 518.93875pt x 260.975pt>
 File: figure2-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure2-eps-converted-to.pdf>
 Package epstopdf Info: Output file is already uptodate.
 
 <figure2-eps-converted-to.pdf, id=41, 518.93875pt x 260.975pt>
 File: figure2-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure2-eps-converted-to.pdf>
-Package pdftex.def Info: figure2-eps-converted-to.pdf used on input line 312.
+Package pdftex.def Info: figure2-eps-converted-to.pdf used on input line 299.
 (pdftex.def)             Requested size: 398.99872pt x 200.66864pt.
 Package epstopdf Info: Source file: <figure3.eps>
 (epstopdf)                    date: 2015-02-20 10:11:12
 (pdftex.def)             Requested size: 398.99872pt x 200.66864pt.
 Package epstopdf Info: Source file: <figure3.eps>
 (epstopdf)                    date: 2015-02-20 10:11:12
@@ -672,14 +672,14 @@ Package epstopdf Info: Source file: <figure3.eps>
 (epstopdf)                    size: 48639 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure3-eps-converted-to.p
 df figure3.eps>
 (epstopdf)                    size: 48639 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure3-eps-converted-to.p
 df figure3.eps>
-(epstopdf)             \includegraphics on input line 357.
+(epstopdf)             \includegraphics on input line 344.
 Package epstopdf Info: Output file is already uptodate.
 
 <figure3-eps-converted-to.pdf, id=42, 332.24126pt x 276.03125pt>
 File: figure3-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure3-eps-converted-to.pdf>
 Package epstopdf Info: Output file is already uptodate.
 
 <figure3-eps-converted-to.pdf, id=42, 332.24126pt x 276.03125pt>
 File: figure3-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure3-eps-converted-to.pdf>
-Package pdftex.def Info: figure3-eps-converted-to.pdf used on input line 357.
+Package pdftex.def Info: figure3-eps-converted-to.pdf used on input line 344.
 (pdftex.def)             Requested size: 163.60333pt x 135.92618pt.
 
 
 (pdftex.def)             Requested size: 163.60333pt x 135.92618pt.
 
 
@@ -718,14 +718,14 @@ Package epstopdf Info: Source file: <figure4.eps>
 (epstopdf)                    size: 76496 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure4-eps-converted-to.p
 df figure4.eps>
 (epstopdf)                    size: 76496 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure4-eps-converted-to.p
 df figure4.eps>
-(epstopdf)             \includegraphics on input line 395.
+(epstopdf)             \includegraphics on input line 382.
 Package epstopdf Info: Output file is already uptodate.
 
 <figure4-eps-converted-to.pdf, id=49, 493.845pt x 362.35374pt>
 File: figure4-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure4-eps-converted-to.pdf>
 Package epstopdf Info: Output file is already uptodate.
 
 <figure4-eps-converted-to.pdf, id=49, 493.845pt x 362.35374pt>
 File: figure4-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure4-eps-converted-to.pdf>
-Package pdftex.def Info: figure4-eps-converted-to.pdf used on input line 395.
+Package pdftex.def Info: figure4-eps-converted-to.pdf used on input line 382.
 (pdftex.def)             Requested size: 227.62204pt x 167.01096pt.
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
 (pdftex.def)             Requested size: 227.62204pt x 167.01096pt.
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
@@ -825,11 +825,11 @@ Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
  [10]
 
 
  [10]
 
-LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 703.
+LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 638.
 
 
 
 
 
 
-LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 715.
+LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 650.
 
 
 
 
 
 
@@ -858,29 +858,26 @@ Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
  [11]
 
 
  [11]
 
-LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 729.
+LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 659.
 
 
 
 
 
 
-LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 735.
+LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 668.
 
 
 
 
 
 
-LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 741.
+LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 674.
 
 
 
 
 
 
-LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 743.
+LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 676.
 
 
 
 
 
 
-LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 745.
+LaTeX Font Warning: Command \scriptsize invalid in math mode on input line 678.
 
 
 
 
 
 
-LaTeX Warning: `h' float specifier changed to `ht'.
-
-
 Underfull \vbox (badness 10000) has occurred while \output is active []
 
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
 
 
@@ -913,14 +910,14 @@ Package epstopdf Info: Source file: <figure5.eps>
 (epstopdf)                    size: 12638 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure5-eps-converted-to.p
 df figure5.eps>
 (epstopdf)                    size: 12638 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure5-eps-converted-to.p
 df figure5.eps>
-(epstopdf)             \includegraphics on input line 832.
+(epstopdf)             \includegraphics on input line 766.
 Package epstopdf Info: Output file is already uptodate.
 
 <figure5-eps-converted-to.pdf, id=81, 484.81125pt x 350.30875pt>
 File: figure5-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure5-eps-converted-to.pdf>
 Package epstopdf Info: Output file is already uptodate.
 
 <figure5-eps-converted-to.pdf, id=81, 484.81125pt x 350.30875pt>
 File: figure5-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure5-eps-converted-to.pdf>
-Package pdftex.def Info: figure5-eps-converted-to.pdf used on input line 832.
+Package pdftex.def Info: figure5-eps-converted-to.pdf used on input line 766.
 (pdftex.def)             Requested size: 242.40503pt x 175.15395pt.
 
 
 (pdftex.def)             Requested size: 242.40503pt x 175.15395pt.
 
 
@@ -934,20 +931,20 @@ Package epstopdf Info: Source file: <figure6.eps>
 (epstopdf)                    size: 12695 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure6-eps-converted-to.p
 df figure6.eps>
 (epstopdf)                    size: 12695 bytes
 (epstopdf)             Command: <repstopdf --outfile=figure6-eps-converted-to.p
 df figure6.eps>
-(epstopdf)             \includegraphics on input line 851.
+(epstopdf)             \includegraphics on input line 785.
 Package epstopdf Info: Output file is already uptodate.
 <figure6-eps-converted-to.pdf, id=82, 484.81125pt x 350.30875pt>
 File: figure6-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure6-eps-converted-to.pdf>
 Package epstopdf Info: Output file is already uptodate.
 <figure6-eps-converted-to.pdf, id=82, 484.81125pt x 350.30875pt>
 File: figure6-eps-converted-to.pdf Graphic file (type pdf)
 
 <use figure6-eps-converted-to.pdf>
-Package pdftex.def Info: figure6-eps-converted-to.pdf used on input line 851.
+Package pdftex.def Info: figure6-eps-converted-to.pdf used on input line 785.
 (pdftex.def)             Requested size: 242.40503pt x 175.15395pt.
 
 
 LaTeX Warning: `!h' float specifier changed to `!ht'.
 
 
 (pdftex.def)             Requested size: 242.40503pt x 175.15395pt.
 
 
 LaTeX Warning: `!h' float specifier changed to `!ht'.
 
 
-Underfull \vbox (badness 1275) has occurred while \output is active []
+Underfull \vbox (badness 10000) has occurred while \output is active []
 
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
 
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
@@ -974,22 +971,22 @@ Overfull \vbox (29.0pt too high) has occurred while \output is active []
 Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
  [13]
 Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
  [13]
-Package epstopdf Info: Source file: <ESR.eps>
+Package epstopdf Info: Source file: <figure7.eps>
 (epstopdf)                    date: 2015-09-28 10:36:28
 (epstopdf)                    size: 29552 bytes
 (epstopdf)                    date: 2015-09-28 10:36:28
 (epstopdf)                    size: 29552 bytes
-(epstopdf)             Output file: <ESR-eps-converted-to.pdf>
-(epstopdf)                    date: 2015-09-28 10:36:41
+(epstopdf)             Output file: <figure7-eps-converted-to.pdf>
+(epstopdf)                    date: 2015-09-29 14:32:04
 (epstopdf)                    size: 12896 bytes
 (epstopdf)                    size: 12896 bytes
-(epstopdf)             Command: <repstopdf --outfile=ESR-eps-converted-to.pdf E
-SR.eps>
-(epstopdf)             \includegraphics on input line 875.
+(epstopdf)             Command: <repstopdf --outfile=figure7-eps-converted-to.p
+df figure7.eps>
+(epstopdf)             \includegraphics on input line 809.
 Package epstopdf Info: Output file is already uptodate.
 
 Package epstopdf Info: Output file is already uptodate.
 
-<ESR-eps-converted-to.pdf, id=87, 484.81125pt x 350.30875pt>
-File: ESR-eps-converted-to.pdf Graphic file (type pdf)
+<figure7-eps-converted-to.pdf, id=87, 484.81125pt x 350.30875pt>
+File: figure7-eps-converted-to.pdf Graphic file (type pdf)
 
 
-<use ESR-eps-converted-to.pdf>
-Package pdftex.def Info: ESR-eps-converted-to.pdf used on input line 875.
+<use figure7-eps-converted-to.pdf>
+Package pdftex.def Info: figure7-eps-converted-to.pdf used on input line 809.
 (pdftex.def)             Requested size: 242.40503pt x 175.15395pt.
 
 
 (pdftex.def)             Requested size: 242.40503pt x 175.15395pt.
 
 
@@ -1020,39 +1017,39 @@ Overfull \vbox (29.0pt too high) has occurred while \output is active []
 Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
  [14 <./figure5-eps-converted-to.pdf> <./figure6-eps-converted-to.pdf>]
 Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
  [14 <./figure5-eps-converted-to.pdf> <./figure6-eps-converted-to.pdf>]
-Package epstopdf Info: Source file: <figure7a.eps>
+Package epstopdf Info: Source file: <figure8a.eps>
 (epstopdf)                    date: 2015-02-06 11:42:02
 (epstopdf)                    size: 24136 bytes
 (epstopdf)                    date: 2015-02-06 11:42:02
 (epstopdf)                    size: 24136 bytes
-(epstopdf)             Output file: <figure7a-eps-converted-to.pdf>
-(epstopdf)                    date: 2015-02-20 10:12:46
+(epstopdf)             Output file: <figure8a-eps-converted-to.pdf>
+(epstopdf)                    date: 2015-09-29 14:50:26
 (epstopdf)                    size: 8179 bytes
 (epstopdf)                    size: 8179 bytes
-(epstopdf)             Command: <repstopdf --outfile=figure7a-eps-converted-to.
-pdf figure7a.eps>
-(epstopdf)             \includegraphics on input line 899.
+(epstopdf)             Command: <repstopdf --outfile=figure8a-eps-converted-to.
+pdf figure8a.eps>
+(epstopdf)             \includegraphics on input line 833.
 Package epstopdf Info: Output file is already uptodate.
 
 Package epstopdf Info: Output file is already uptodate.
 
-<figure7a-eps-converted-to.pdf, id=101, 493.845pt x 350.30875pt>
-File: figure7a-eps-converted-to.pdf Graphic file (type pdf)
+<figure8a-eps-converted-to.pdf, id=101, 493.845pt x 350.30875pt>
+File: figure8a-eps-converted-to.pdf Graphic file (type pdf)
 
 
-<use figure7a-eps-converted-to.pdf>
-Package pdftex.def Info: figure7a-eps-converted-to.pdf used on input line 899.
+<use figure8a-eps-converted-to.pdf>
+Package pdftex.def Info: figure8a-eps-converted-to.pdf used on input line 833.
 (pdftex.def)             Requested size: 246.92189pt x 175.15395pt.
 (pdftex.def)             Requested size: 246.92189pt x 175.15395pt.
-Package epstopdf Info: Source file: <figure7b.eps>
+Package epstopdf Info: Source file: <figure8b.eps>
 (epstopdf)                    date: 2015-02-06 11:42:02
 (epstopdf)                    size: 24138 bytes
 (epstopdf)                    date: 2015-02-06 11:42:02
 (epstopdf)                    size: 24138 bytes
-(epstopdf)             Output file: <figure7b-eps-converted-to.pdf>
-(epstopdf)                    date: 2015-02-20 10:12:47
+(epstopdf)             Output file: <figure8b-eps-converted-to.pdf>
+(epstopdf)                    date: 2015-09-29 14:50:26
 (epstopdf)                    size: 8180 bytes
 (epstopdf)                    size: 8180 bytes
-(epstopdf)             Command: <repstopdf --outfile=figure7b-eps-converted-to.
-pdf figure7b.eps>
-(epstopdf)             \includegraphics on input line 900.
+(epstopdf)             Command: <repstopdf --outfile=figure8b-eps-converted-to.
+pdf figure8b.eps>
+(epstopdf)             \includegraphics on input line 834.
 Package epstopdf Info: Output file is already uptodate.
 
 Package epstopdf Info: Output file is already uptodate.
 
-<figure7b-eps-converted-to.pdf, id=102, 493.845pt x 350.30875pt>
-File: figure7b-eps-converted-to.pdf Graphic file (type pdf)
+<figure8b-eps-converted-to.pdf, id=102, 493.845pt x 350.30875pt>
+File: figure8b-eps-converted-to.pdf Graphic file (type pdf)
 
 
-<use figure7b-eps-converted-to.pdf>
-Package pdftex.def Info: figure7b-eps-converted-to.pdf used on input line 900.
+<use figure8b-eps-converted-to.pdf>
+Package pdftex.def Info: figure8b-eps-converted-to.pdf used on input line 834.
 (pdftex.def)             Requested size: 246.92189pt x 175.15395pt.
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
 (pdftex.def)             Requested size: 246.92189pt x 175.15395pt.
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
@@ -1078,41 +1075,41 @@ Overfull \vbox (29.0pt too high) has occurred while \output is active []
 
 Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
 
 Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
- [15 <./ESR-eps-converted-to.pdf> <./figure7a-eps-converted-to.pdf> <./figure7b
--eps-converted-to.pdf>]
-Package epstopdf Info: Source file: <figure8a.eps>
+ [15 <./figure7-eps-converted-to.pdf> <./figure8a-eps-converted-to.pdf> <./figu
+re8b-eps-converted-to.pdf>]
+Package epstopdf Info: Source file: <figure9a.eps>
 (epstopdf)                    date: 2015-02-06 11:42:03
 (epstopdf)                    size: 24103 bytes
 (epstopdf)                    date: 2015-02-06 11:42:03
 (epstopdf)                    size: 24103 bytes
-(epstopdf)             Output file: <figure8a-eps-converted-to.pdf>
-(epstopdf)                    date: 2015-02-20 10:12:47
+(epstopdf)             Output file: <figure9a-eps-converted-to.pdf>
+(epstopdf)                    date: 2015-09-29 14:50:27
 (epstopdf)                    size: 8351 bytes
 (epstopdf)                    size: 8351 bytes
-(epstopdf)             Command: <repstopdf --outfile=figure8a-eps-converted-to.
-pdf figure8a.eps>
-(epstopdf)             \includegraphics on input line 923.
+(epstopdf)             Command: <repstopdf --outfile=figure9a-eps-converted-to.
+pdf figure9a.eps>
+(epstopdf)             \includegraphics on input line 856.
 Package epstopdf Info: Output file is already uptodate.
 
 Package epstopdf Info: Output file is already uptodate.
 
-<figure8a-eps-converted-to.pdf, id=121, 493.845pt x 350.30875pt>
-File: figure8a-eps-converted-to.pdf Graphic file (type pdf)
+<figure9a-eps-converted-to.pdf, id=121, 493.845pt x 350.30875pt>
+File: figure9a-eps-converted-to.pdf Graphic file (type pdf)
 
 
-<use figure8a-eps-converted-to.pdf>
-Package pdftex.def Info: figure8a-eps-converted-to.pdf used on input line 923.
+<use figure9a-eps-converted-to.pdf>
+Package pdftex.def Info: figure9a-eps-converted-to.pdf used on input line 856.
 (pdftex.def)             Requested size: 246.92189pt x 175.15395pt.
 (pdftex.def)             Requested size: 246.92189pt x 175.15395pt.
-Package epstopdf Info: Source file: <figure8b.eps>
+Package epstopdf Info: Source file: <figure9b.eps>
 (epstopdf)                    date: 2015-02-06 11:42:03
 (epstopdf)                    size: 24855 bytes
 (epstopdf)                    date: 2015-02-06 11:42:03
 (epstopdf)                    size: 24855 bytes
-(epstopdf)             Output file: <figure8b-eps-converted-to.pdf>
-(epstopdf)                    date: 2015-02-20 10:12:47
+(epstopdf)             Output file: <figure9b-eps-converted-to.pdf>
+(epstopdf)                    date: 2015-09-29 14:50:27
 (epstopdf)                    size: 8466 bytes
 (epstopdf)                    size: 8466 bytes
-(epstopdf)             Command: <repstopdf --outfile=figure8b-eps-converted-to.
-pdf figure8b.eps>
-(epstopdf)             \includegraphics on input line 924.
+(epstopdf)             Command: <repstopdf --outfile=figure9b-eps-converted-to.
+pdf figure9b.eps>
+(epstopdf)             \includegraphics on input line 857.
 Package epstopdf Info: Output file is already uptodate.
 
 Package epstopdf Info: Output file is already uptodate.
 
-<figure8b-eps-converted-to.pdf, id=122, 493.845pt x 350.30875pt>
-File: figure8b-eps-converted-to.pdf Graphic file (type pdf)
+<figure9b-eps-converted-to.pdf, id=122, 493.845pt x 350.30875pt>
+File: figure9b-eps-converted-to.pdf Graphic file (type pdf)
 
 
-<use figure8b-eps-converted-to.pdf>
-Package pdftex.def Info: figure8b-eps-converted-to.pdf used on input line 924.
+<use figure9b-eps-converted-to.pdf>
+Package pdftex.def Info: figure9b-eps-converted-to.pdf used on input line 857.
 (pdftex.def)             Requested size: 246.92189pt x 175.15395pt.
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
 (pdftex.def)             Requested size: 246.92189pt x 175.15395pt.
 
 Underfull \vbox (badness 10000) has occurred while \output is active []
@@ -1138,23 +1135,23 @@ Overfull \vbox (29.0pt too high) has occurred while \output is active []
 
 Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
 
 Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
- [16 <./figure8a-eps-converted-to.pdf> <./figure8b-eps-converted-to.pdf>]
-Package epstopdf Info: Source file: <figure9.eps>
+ [16 <./figure9a-eps-converted-to.pdf> <./figure9b-eps-converted-to.pdf>]
+Package epstopdf Info: Source file: <figure10.eps>
 (epstopdf)                    date: 2015-09-28 10:13:03
 (epstopdf)                    size: 26999 bytes
 (epstopdf)                    date: 2015-09-28 10:13:03
 (epstopdf)                    size: 26999 bytes
-(epstopdf)             Output file: <figure9-eps-converted-to.pdf>
-(epstopdf)                    date: 2015-09-28 10:24:52
+(epstopdf)             Output file: <figure10-eps-converted-to.pdf>
+(epstopdf)                    date: 2015-09-29 14:50:27
 (epstopdf)                    size: 7928 bytes
 (epstopdf)                    size: 7928 bytes
-(epstopdf)             Command: <repstopdf --outfile=figure9-eps-converted-to.p
-df figure9.eps>
-(epstopdf)             \includegraphics on input line 943.
+(epstopdf)             Command: <repstopdf --outfile=figure10-eps-converted-to.
+pdf figure10.eps>
+(epstopdf)             \includegraphics on input line 876.
 Package epstopdf Info: Output file is already uptodate.
 
 Package epstopdf Info: Output file is already uptodate.
 
-<figure9-eps-converted-to.pdf, id=136, 484.81125pt x 350.30875pt>
-File: figure9-eps-converted-to.pdf Graphic file (type pdf)
+<figure10-eps-converted-to.pdf, id=136, 484.81125pt x 350.30875pt>
+File: figure10-eps-converted-to.pdf Graphic file (type pdf)
 
 
-<use figure9-eps-converted-to.pdf>
-Package pdftex.def Info: figure9-eps-converted-to.pdf used on input line 943.
+<use figure10-eps-converted-to.pdf>
+Package pdftex.def Info: figure10-eps-converted-to.pdf used on input line 876.
 (pdftex.def)             Requested size: 266.647pt x 192.6704pt.
 
 Underfull \vbox (badness 1337) has occurred while \output is active []
 (pdftex.def)             Requested size: 266.647pt x 192.6704pt.
 
 Underfull \vbox (badness 1337) has occurred while \output is active []
@@ -1183,7 +1180,7 @@ Overfull \vbox (29.0pt too high) has occurred while \output is active []
 
 Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
 
 Overfull \vbox (701.0pt too high) has occurred while \output is active []
 
- [17 <./figure9-eps-converted-to.pdf>] (./articleeo.bbl
+ [17 <./figure10-eps-converted-to.pdf>] (./articleeo.bbl
 Underfull \hbox (badness 6658) in paragraph at lines 48--50
 []\OT1/cmr/m/n/10 CPLEX, Op-ti-mizer. 2010. ``IBM ILOG CPLEX Op-ti-mizer.'' \OT
 1/cmr/m/it/10 Avail-able: http://www-
 Underfull \hbox (badness 6658) in paragraph at lines 48--50
 []\OT1/cmr/m/n/10 CPLEX, Op-ti-mizer. 2010. ``IBM ILOG CPLEX Op-ti-mizer.'' \OT
 1/cmr/m/it/10 Avail-able: http://www-
@@ -1291,12 +1288,12 @@ LaTeX Font Warning: Some font shapes were not available, defaults substituted.
  ) 
 Here is how much of TeX's memory you used:
  4871 strings out of 495059
  ) 
 Here is how much of TeX's memory you used:
  4871 strings out of 495059
- 63603 string characters out of 3182031
+ 63632 string characters out of 3182031
  150043 words of memory out of 3000000
  7964 multiletter control sequences out of 15000+200000
  14560 words of font info for 56 fonts, out of 3000000 for 9000
  14 hyphenation exceptions out of 8191
  150043 words of memory out of 3000000
  7964 multiletter control sequences out of 15000+200000
  14560 words of font info for 56 fonts, out of 3000000 for 9000
  14 hyphenation exceptions out of 8191
- 41i,19n,27p,520b,385s stack positions out of 5000i,500n,10000p,200000b,50000s
+ 41i,19n,27p,488b,385s stack positions out of 5000i,500n,10000p,200000b,50000s
 </usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb></us
 r/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx9.pfb></usr/share
 /texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbxti10.pfb></usr/share/tex
 </usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb></us
 r/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx9.pfb></usr/share
 /texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbxti10.pfb></usr/share/tex
@@ -1317,7 +1314,7 @@ s/type1/public/amsfonts/cm/cmsy8.pfb></usr/share/texlive/texmf-dist/fonts/type1
 /public/amsfonts/cm/cmti10.pfb></usr/share/texlive/texmf-dist/fonts/type1/publi
 c/amsfonts/cm/cmti8.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfo
 nts/symbols/msbm10.pfb>
 /public/amsfonts/cm/cmti10.pfb></usr/share/texlive/texmf-dist/fonts/type1/publi
 c/amsfonts/cm/cmti8.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfo
 nts/symbols/msbm10.pfb>
-Output written on articleeo.pdf (20 pages, 762281 bytes).
+Output written on articleeo.pdf (20 pages, 762050 bytes).
 PDF statistics:
  222 PDF objects out of 1000 (max. 8388607)
  151 compressed objects within 2 object streams
 PDF statistics:
  222 PDF objects out of 1000 (max. 8388607)
  151 compressed objects within 2 object streams
index 53d187b67c4b611b3386e059627146bc9ed6a531..3bdbc2284754894d4105f7fcc8bab201295d1b29 100644 (file)
Binary files a/PeCO-EO/articleeo.pdf and b/PeCO-EO/articleeo.pdf differ
index b6becc3dd854686e46bf59d12d8fdcbe2129f92b..f9a5f6d18ff70e9859fea6b64208c19f447b4904 100644 (file)
@@ -2,17 +2,12 @@
 % v4.0 released April 2013
 
 \documentclass{gENO2e}
 % v4.0 released April 2013
 
 \documentclass{gENO2e}
-%\usepackage[linesnumbered,ruled,vlined,commentsnumbered]{algorithm2e}
-%\renewcommand{\algorithmcfname}{ALGORITHM}
+
 \usepackage{indentfirst}
 \usepackage{color}
 \usepackage[algo2e,ruled,vlined]{algorithm2e}
 \begin{document}
 
 \usepackage{indentfirst}
 \usepackage{color}
 \usepackage[algo2e,ruled,vlined]{algorithm2e}
 \begin{document}
 
-%\jvol{00} \jnum{00} \jyear{2013} \jmonth{April}
-
-%\articletype{GUIDE}
-
 \title{{\itshape Perimeter-based Coverage Optimization \\
   to Improve Lifetime in Wireless Sensor Networks}}
 
 \title{{\itshape Perimeter-based Coverage Optimization \\
   to Improve Lifetime in Wireless Sensor Networks}}
 
@@ -29,11 +24,10 @@ The most important problem in a Wireless Sensor Network (WSN) is to optimize the
 use of its limited energy provision, so  that it can fulfill its monitoring task
 as  long as  possible. Among  known  available approaches  that can  be used  to
 improve  power  management,  lifetime coverage  optimization  provides  activity
 use of its limited energy provision, so  that it can fulfill its monitoring task
 as  long as  possible. Among  known  available approaches  that can  be used  to
 improve  power  management,  lifetime coverage  optimization  provides  activity
-scheduling which ensures  sensing coverage while minimizing the  energy cost. We
-propose such  an approach called Perimeter-based  Coverage Optimization protocol
-(PeCO). It  is a hybrid  of centralized and  distributed methods: the  region of
+scheduling which ensures  sensing coverage while minimizing the  energy cost. An approach called Perimeter-based  Coverage Optimization protocol
+(PeCO) is proposed. It is a hybrid  of centralized and  distributed methods: the  region of
 interest  is  first  subdivided  into   subregions  and  the  protocol  is  then
 interest  is  first  subdivided  into   subregions  and  the  protocol  is  then
-distributed among sensor  nodes in each subregion.  The novelty  of our approach
+distributed among sensor  nodes in each subregion.  The novelty  of the approach
 lies essentially  in the  formulation of a  new mathematical  optimization model
 based  on  the  perimeter  coverage   level  to  schedule  sensors'  activities.
 Extensive simulation experiments demonstrate that PeCO can offer longer lifetime
 lies essentially  in the  formulation of a  new mathematical  optimization model
 based  on  the  perimeter  coverage   level  to  schedule  sensors'  activities.
 Extensive simulation experiments demonstrate that PeCO can offer longer lifetime
@@ -89,15 +83,14 @@ This paper makes the following contributions :
   architecture.
 \item A new  mathematical optimization model is proposed.  Instead  of trying to
   cover a set of specified points/targets as  in most of the methods proposed in
   architecture.
 \item A new  mathematical optimization model is proposed.  Instead  of trying to
   cover a set of specified points/targets as  in most of the methods proposed in
-  the literature,  we formulate a  mixed-integer program based on  the perimeter
-  coverage of each sensor.  The model  involves integer variables to capture the
+  the literature, a  mixed-integer program based on  the perimeter
+  coverage of each sensor is formulated.  The model  involves integer variables to capture the
   deviations  between the  actual  level  of coverage  and  the required  level.
   Hence, an  optimal schedule will be  obtained by minimizing a  weighted sum of
   these deviations.
 \item Extensive  simulation experiments are  conducted using the  discrete event
   deviations  between the  actual  level  of coverage  and  the required  level.
   Hence, an  optimal schedule will be  obtained by minimizing a  weighted sum of
   these deviations.
 \item Extensive  simulation experiments are  conducted using the  discrete event
-  simulator OMNeT++,  to demonstrate  the efficiency of  our protocol.   We have
-  compared  the  PeCO  protocol  to  two approaches  found  in  the  literature:
-  DESK~\citep{ChinhVu} and GAF~\citep{xu2001geography}, and also to our previous
+  simulator OMNeT++,  to demonstrate  the efficiency of  the PeCO protocol.   The  PeCO  protocol has been compared to  two approaches  found  in  the  literature:
+  DESK~\citep{ChinhVu} and GAF~\citep{xu2001geography}, and also to the
   protocol DiLCO published in~\citep{Idrees2}. DiLCO  uses the same framework as
   PeCO but is based on another optimization model for sensor scheduling.
 \end{enumerate}
   protocol DiLCO published in~\citep{Idrees2}. DiLCO  uses the same framework as
   PeCO but is based on another optimization model for sensor scheduling.
 \end{enumerate}
@@ -134,7 +127,7 @@ algorithm  in  $O(nd~log~d)$ time  to  compute  the perimeter-coverage  of  each
 sensor.  $d$ denotes  the maximum  number  of sensors  that are  neighbors to  a
 sensor, and  $n$ is the  total number  of sensors in  the network. {\it  In PeCO
   protocol, instead  of determining the level  of coverage of a  set of discrete
 sensor.  $d$ denotes  the maximum  number  of sensors  that are  neighbors to  a
 sensor, and  $n$ is the  total number  of sensors in  the network. {\it  In PeCO
   protocol, instead  of determining the level  of coverage of a  set of discrete
-  points, our optimization model is  based on checking the perimeter-coverage of
+  points, the optimization model is  based on checking the perimeter-coverage of
   each sensor to activate a minimal number of sensors.}
 
 The major  approach to extend network  lifetime while preserving coverage  is to
   each sensor to activate a minimal number of sensors.}
 
 The major  approach to extend network  lifetime while preserving coverage  is to
@@ -212,8 +205,8 @@ decomposed into 4  phases: information exchange, leader  election, decision, and
 sensing. The  simulations show that DiLCO  is able to increase  the WSN lifetime
 and provides  improved coverage performance.  {\it  In the PeCO protocol,  a new
   mathematical optimization model is proposed. Instead  of trying to cover a set
 sensing. The  simulations show that DiLCO  is able to increase  the WSN lifetime
 and provides  improved coverage performance.  {\it  In the PeCO protocol,  a new
   mathematical optimization model is proposed. Instead  of trying to cover a set
-  of specified points/targets as in the  DiLCO protocol, we formulate an integer
-  program based  on the perimeter  coverage of  each sensor. The  model involves
+  of specified points/targets as in the  DiLCO protocol, an integer
+  program based  on the perimeter  coverage of  each sensor is formulated. The  model involves
   integer  variables to  capture  the  deviations between  the  actual level  of
   coverage and the  required level. The idea is that  an optimal scheduling will
   be obtained by minimizing a weighted sum of these deviations.}
   integer  variables to  capture  the  deviations between  the  actual level  of
   coverage and the  required level. The idea is that  an optimal scheduling will
   be obtained by minimizing a weighted sum of these deviations.}
@@ -221,12 +214,6 @@ and provides  improved coverage performance.  {\it  In the PeCO protocol,  a new
 \section{ The P{\scshape e}CO Protocol Description}
 \label{sec:The PeCO Protocol Description}
 
 \section{ The P{\scshape e}CO Protocol Description}
 \label{sec:The PeCO Protocol Description}
 
-%In  this  section,  the Perimeter-based  Coverage
-%Optimization protocol is decribed in details.  First we present the  assumptions we made and the models
-%we considered (in particular the perimeter coverage one), second we describe the
-%background idea of our protocol, and third  we give the outline of the algorithm
-%executed by each node.
-
 
 \subsection{Assumptions and Models}
 \label{CI}
 
 \subsection{Assumptions and Models}
 \label{CI}
@@ -242,7 +229,7 @@ algorithms. A Boolean disk coverage model,  which is the most widely used sensor
 coverage model  in the  literature, is  considered and all  sensor nodes  have a
 constant sensing range $R_s$.  Thus, all the space points within a disk centered
 at a sensor with  a radius equal to the sensing range are  said to be covered by
 coverage model  in the  literature, is  considered and all  sensor nodes  have a
 constant sensing range $R_s$.  Thus, all the space points within a disk centered
 at a sensor with  a radius equal to the sensing range are  said to be covered by
-this sensor.  We  also assume that the communication range  $R_c$ satisfies $R_c
+this sensor.  The communication range  $R_c$ is assumed to satisfy : $R_c
 \geq 2  \cdot R_s$.  In  fact, \citet{Zhang05}  proved that if  the transmission
 range fulfills the  previous hypothesis, the complete coverage of  a convex area
 implies connectivity among active nodes.
 \geq 2  \cdot R_s$.  In  fact, \citet{Zhang05}  proved that if  the transmission
 range fulfills the  previous hypothesis, the complete coverage of  a convex area
 implies connectivity among active nodes.
@@ -256,9 +243,9 @@ $k$~sensors) if and only if each  sensor in the network is $k$-perimeter-covered
 (perimeter covered by at least $k$ sensors).
  
 Figure~\ref{figure1}(a) shows the coverage of  sensor node~$0$.  On this figure,
 (perimeter covered by at least $k$ sensors).
  
 Figure~\ref{figure1}(a) shows the coverage of  sensor node~$0$.  On this figure,
-sensor~$0$  has nine  neighbors  and  we have  reported  on  its perimeter  (the
-perimeter of the  disk covered by the  sensor) for each neighbor  the two points
-resulting from  the intersection  of the  two sensing  areas.  These  points are
+sensor~$0$  has nine  neighbors. For each neighbor  the two points
+resulting from  the intersection  of the  two sensing  areas have been reported  on  its perimeter  (the
+perimeter of the  disk covered by the  sensor~$0$).  These  points are
 denoted for neighbor~$i$ by $iL$ and  $iR$, respectively for left and right from
 a  neighboring point  of view.   The  resulting couples  of intersection  points
 subdivide the perimeter of sensor~$0$ into portions called arcs.
 denoted for neighbor~$i$ by $iL$ and  $iR$, respectively for left and right from
 a  neighboring point  of view.   The  resulting couples  of intersection  points
 subdivide the perimeter of sensor~$0$ into portions called arcs.
@@ -364,7 +351,7 @@ optimization algorithm.
 \subsection{Main Idea}
 
 The WSN area of  interest is, in a first step,  divided into regular homogeneous
 \subsection{Main Idea}
 
 The WSN area of  interest is, in a first step,  divided into regular homogeneous
-subregions using a  divide-and-conquer algorithm. In a second  step our protocol
+subregions using a  divide-and-conquer algorithm. In a second  step the protocol
 will  be executed  in  a distributed  way in  each  subregion simultaneously  to
 schedule nodes' activities  for one sensing period. Sensor nodes  are assumed to
 be deployed  almost uniformly over the  region. The regular subdivision  is made
 will  be executed  in  a distributed  way in  each  subregion simultaneously  to
 schedule nodes' activities  for one sensing period. Sensor nodes  are assumed to
 be deployed  almost uniformly over the  region. The regular subdivision  is made
@@ -397,7 +384,7 @@ of the application.
 \label{figure4}
 \end{figure} 
 
 \label{figure4}
 \end{figure} 
 
-We define two types of packets to be used by the PeCO protocol:
+Two types of packets used by the PeCO protocol are defined:
 \begin{itemize} 
 \item INFO  packet: sent  by each  sensor node to  all the  nodes inside  a same
   subregion for information exchange.
 \begin{itemize} 
 \item INFO  packet: sent  by each  sensor node to  all the  nodes inside  a same
   subregion for information exchange.
@@ -424,10 +411,6 @@ applied by a sensor node $s_k$ where $k$ is the node index in the WSN.
 
 
 \begin{algorithm2e}      
 
 
 \begin{algorithm2e}      
- % \KwIn{all the parameters related to information exchange}
-%  \KwOut{$winer-node$ (: the id of the winner sensor node, which is the leader of current round)}
-%  \BlankLine
-  %\emph{Initialize the sensor node and determine it's position and subregion} \;
   \label{alg:PeCO}
   \caption{PeCO pseudocode}
   \eIf{$RE_k \geq E_{th}$}{
   \label{alg:PeCO}
   \caption{PeCO pseudocode}
   \eIf{$RE_k \geq E_{th}$}{
@@ -462,42 +445,6 @@ applied by a sensor node $s_k$ where $k$ is the node index in the WSN.
   }
 \end{algorithm2e}
 
   }
 \end{algorithm2e}
 
-%\begin{algorithm}
-%\noindent{\bf If} $RE_k \geq E_{th}$ {\bf then}\\
-%\hspace*{0.6cm} \emph{$s_k.status$ = COMMUNICATION;}\\
-%\hspace*{0.6cm}  \emph{Send $INFO()$ packet to other nodes in subregion;}\\
-%\hspace*{0.6cm}  \emph{Wait $INFO()$ packet from other nodes in subregion;}\\
-%\hspace*{0.6cm} \emph{Update K.CurrentSize;}\\
-%\hspace*{0.6cm}  \emph{LeaderID = Leader election;}\\
-%\hspace*{0.6cm} {\bf If} $ s_k.ID = LeaderID $ {\bf then}\\
-%\hspace*{1.2cm}   \emph{$s_k.status$ = COMPUTATION;}\\
-%\hspace*{1.2cm}{\bf If} \emph{$ s_k.ID $ is Not previously selected as a Leader} {\bf then}\\
-%\hspace*{1.8cm} \emph{ Execute the perimeter coverage model;}\\
-%\hspace*{1.2cm} {\bf end}\\
-%\hspace*{1.2cm}{\bf If} \emph{($s_k.ID $ is the same Previous Leader)~And~(K.CurrentSize = K.PreviousSize)}\\
-%\hspace*{1.8cm} \emph{ Use the same previous cover set for current sensing stage;}\\
-%\hspace*{1.2cm}  {\bf end}\\
-%\hspace*{1.2cm}  {\bf else}\\
-%\hspace*{1.8cm}\emph{Update $a^j_{ik}$; prepare data for IP~Algorithm;}\\
-%\hspace*{1.8cm} \emph{$\left\{\left(X_{1},\dots,X_{l},\dots,X_{K}\right)\right\}$ = Execute Integer Program Algorithm($K$);}\\
-%\hspace*{1.8cm} \emph{K.PreviousSize = K.CurrentSize;}\\
-%\hspace*{1.2cm}  {\bf end}\\
-%\hspace*{1.2cm}\emph{$s_k.status$ = COMMUNICATION;}\\
-%\hspace*{1.2cm}\emph{Send $ActiveSleep()$ to each node $l$ in subregion;}\\
-%\hspace*{1.2cm}\emph{Update $RE_k $;}\\
-%\hspace*{0.6cm}  {\bf end}\\
-%\hspace*{0.6cm}  {\bf else}\\
-%\hspace*{1.2cm}\emph{$s_k.status$ = LISTENING;}\\
-%\hspace*{1.2cm}\emph{Wait $ActiveSleep()$ packet from the Leader;}\\
-%\hspace*{1.2cm}\emph{Update $RE_k $;}\\
-%\hspace*{0.6cm}  {\bf end}\\
-%{\bf end}\\
-%{\bf else}\\
-%\hspace*{0.6cm} \emph{Exclude $s_k$ from entering in the current sensing stage;}\\
-%{\bf end}\\
-%\label{alg:PeCO}
-%\end{algorithm}
-
 In this  algorithm, $K.CurrentSize$ and $K.PreviousSize$  respectively represent
 the current number and the previous number  of living nodes in the subnetwork of
 the  subregion.   At the  beginning  of  the  first period  $K.PreviousSize$  is
 In this  algorithm, $K.CurrentSize$ and $K.PreviousSize$  respectively represent
 the current number and the previous number  of living nodes in the subnetwork of
 the  subregion.   At the  beginning  of  the  first period  $K.PreviousSize$  is
@@ -507,7 +454,7 @@ in  the current  period.   Each  sensor node  determines  its  position and  its
 subregion using an  embedded GPS or a location discovery  algorithm. After that,
 all the sensors collect position  coordinates, remaining energy, sensor node ID,
 and the number of their one-hop  live neighbors during the information exchange.
 subregion using an  embedded GPS or a location discovery  algorithm. After that,
 all the sensors collect position  coordinates, remaining energy, sensor node ID,
 and the number of their one-hop  live neighbors during the information exchange.
-\textcolor{green}{Both INFO packet and ActiveSleep packet contain two parts: header and data payload. The sensor ID is included in the header, where the header size is 8 bits. The data part includes position coordinates (64 bits), remaining energy (32 bits), and the number of one-hop live neighbors (8 bits). Therefore the size of the INFO packet is 112 bits. The ActiveSleep packet is 16 bits size, 8 bits for the header and 8 bits for data part that includes only sensor status (0 or 1).}
+Both INFO packet and ActiveSleep packet contain two parts: header and data payload. The sensor ID is included in the header, where the header size is 8 bits. The data part includes position coordinates (64 bits), remaining energy (32 bits), and the number of one-hop live neighbors (8 bits). Therefore the size of the INFO packet is 112 bits. The ActiveSleep packet is 16 bits size, 8 bits for the header and 8 bits for data part that includes only sensor status (0 or 1).
 The sensors  inside a same  region cooperate to  elect a leader.   The selection
 criteria for the leader are (in order  of priority):
 \begin{enumerate}
 The sensors  inside a same  region cooperate to  elect a leader.   The selection
 criteria for the leader are (in order  of priority):
 \begin{enumerate}
@@ -569,7 +516,7 @@ coverage level. As the number of  alive sensors decreases, it becomes impossible
 to reach  the desired level  of coverage  for all coverage  intervals. Therefore
 variables  $M^j_i$ and  $V^j_i$ are  introduced as  a measure  of the  deviation
 between the  desired number  of active  sensors in a  coverage interval  and the
 to reach  the desired level  of coverage  for all coverage  intervals. Therefore
 variables  $M^j_i$ and  $V^j_i$ are  introduced as  a measure  of the  deviation
 between the  desired number  of active  sensors in a  coverage interval  and the
-effective number.  And we try to  minimize these deviations, first  to force the
+effective number.  And these deviations are minimized, first  to force the
 activation of a minimal number of  sensors to ensure the desired coverage level,
 and if  the desired level  cannot be completely  satisfied, to reach  a coverage
 level as close as possible to the desired one.
 activation of a minimal number of  sensors to ensure the desired coverage level,
 and if  the desired level  cannot be completely  satisfied, to reach  a coverage
 level as close as possible to the desired one.
@@ -586,18 +533,6 @@ The coverage optimization problem can then be mathematically expressed as follow
   \end{aligned}
 \end{equation}
 
   \end{aligned}
 \end{equation}
 
-%\begin{equation} 
-%\left \{
-%\begin{array}{ll}
-%\min \sum_{j \in S} \sum_{i \in I_j} (\alpha^j_i ~ M^j_i + \beta^j_i ~ V^j_i ) & \\
-%\textrm{subject to :} &\\
-%\sum_{k \in A} ( a^j_{ik} ~ X_{k}) + M^j_i  \geq l \quad \forall i \in I_j, \forall j \in S\\
-%\sum_{k \in A} ( a^j_{ik} ~ X_{k}) - V^j_i  \leq l \quad \forall i \in I_j, \forall j \in S\\
-%X_{k} \in \{0,1\}, \forall k \in A \\
-%M^j_i, V^j_i \in \mathbb{R}^{+} 
-%\end{array}
-%\right.
-%\end{equation}
 
 If a given level of coverage $l$ is  required for one sensor, the sensor is said
 to be undercovered (respectively overcovered) if the level of coverage of one of
 
 If a given level of coverage $l$ is  required for one sensor, the sensor is said
 to be undercovered (respectively overcovered) if the level of coverage of one of
@@ -634,7 +569,7 @@ be alive during one sensing phase) are considered in the model.
 \subsection{Simulation Settings}
 
 The WSN  area of interest is  supposed to be divided  into 16~regular subregions
 \subsection{Simulation Settings}
 
 The WSN  area of interest is  supposed to be divided  into 16~regular subregions
-and   we  use   the  same   energy  consumption   model  as   in  our   previous
+and the  energy  consumption   model  used is described in previous
 work~\citep{Idrees2}.  Table~\ref{table3} gives the chosen parameters settings.
 
 \begin{table}[ht]
 work~\citep{Idrees2}.  Table~\ref{table3} gives the chosen parameters settings.
 
 \begin{table}[ht]
@@ -697,7 +632,7 @@ approach.
   because without  network connectivity a  sensor may not be  able to send  to a
   base station an event it has sensed.
 \item {\bf  Coverage Ratio (CR)} : it  measures how  well the  WSN is  able to
   because without  network connectivity a  sensor may not be  able to send  to a
   base station an event it has sensed.
 \item {\bf  Coverage Ratio (CR)} : it  measures how  well the  WSN is  able to
-  observe the area of interest. In our  case, the sensor field is discretized as
+  observe the area of interest. Here the sensor field is discretized as
   a regular grid, which yields the following equation:
   \begin{equation*}
     \scriptsize
   a regular grid, which yields the following equation:
   \begin{equation*}
     \scriptsize
@@ -707,7 +642,7 @@ approach.
   subregions during  the current sensing phase  and $N$ is total  number of grid
   points in the sensing field. A layout of $N~=~51~\times~26~=~1326$~grid points
   is considered in the simulations.
   subregions during  the current sensing phase  and $N$ is total  number of grid
   points in the sensing field. A layout of $N~=~51~\times~26~=~1326$~grid points
   is considered in the simulations.
-\item {\bf Active Sensors Ratio (ASR)}: a  major objective of our protocol is to
+\item {\bf Active Sensors Ratio (ASR)}: a  major objective of the proposed protocol is to
   activate as  few nodes  as possible,  in order  to minimize  the communication
   overhead and maximize the WSN lifetime. The active sensors ratio is defined as
   follows:
   activate as  few nodes  as possible,  in order  to minimize  the communication
   overhead and maximize the WSN lifetime. The active sensors ratio is defined as
   follows:
@@ -719,14 +654,12 @@ approach.
   sensing period~$p$, $R$  is the number of subregions, and  $|J|$ is the number
   of sensors in the network.
   
   sensing period~$p$, $R$  is the number of subregions, and  $|J|$ is the number
   of sensors in the network.
   
-\item {\bf \textcolor{green}{Energy Saving Ratio (ESR)}}:  
-\textcolor{green}{this metric, which shows the ability of a protocol to save energy, is defined by:
+\item {\bf Energy Saving Ratio (ESR)}:this metric, which shows the ability of a protocol to save energy, is defined by:
 \begin{equation*}
 \scriptsize
 \mbox{ESR}(\%) = \frac{\mbox{Number of alive sensors during this round}}
 {\mbox{Total number of sensors in the network}} \times 100.
 \end{equation*}  
 \begin{equation*}
 \scriptsize
 \mbox{ESR}(\%) = \frac{\mbox{Number of alive sensors during this round}}
 {\mbox{Total number of sensors in the network}} \times 100.
 \end{equation*}  
-  }
 \item {\bf Energy Consumption (EC)}: energy consumption can be seen as the total
   energy  consumed by  the  sensors during  $Lifetime_{95}$ or  $Lifetime_{50}$,
   divided by  the number of  periods. The value of  EC is computed  according to
 \item {\bf Energy Consumption (EC)}: energy consumption can be seen as the total
   energy  consumed by  the  sensors during  $Lifetime_{95}$ or  $Lifetime_{50}$,
   divided by  the number of  periods. The value of  EC is computed  according to
@@ -751,9 +684,9 @@ approach.
 
 \subsection{Simulation Results}
 
 
 \subsection{Simulation Results}
 
-In  order  to  assess and  analyze  the  performance  of  our protocol  we  have
-implemented  the   PeCO  protocol   in  OMNeT++~\citep{varga}   simulator.   The
-simulations were  run on a  DELL laptop  with an Intel  Core~i3~2370~M (1.8~GHz)
+
+The PeCO  protocol has been implemented  in  OMNeT++~\citep{varga}   simulator in  order  to  assess and  analyze  its  performance. 
+The simulations were  run on a  DELL laptop  with an Intel  Core~i3~2370~M (1.8~GHz)
 processor (2 cores)  whose MIPS (Million Instructions Per Second)  rate is equal
 to 35330.  To be consistent with  the use of a  sensor node based on  Atmels AVR
 ATmega103L microcontroller (6~MHz)  having a MIPS rate equal to  6, the original
 processor (2 cores)  whose MIPS (Million Instructions Per Second)  rate is equal
 to 35330.  To be consistent with  the use of a  sensor node based on  Atmels AVR
 ATmega103L microcontroller (6~MHz)  having a MIPS rate equal to  6, the original
@@ -785,9 +718,9 @@ to generate  the integer program  instance in a  standard format, which  is then
 read and  solved by  the optimization  solver GLPK  (GNU linear  Programming Kit
 available in the public domain)  \citep{glpk} through a Branch-and-Bound method.
 In practice, executing GLPK on a sensor node is obviously intractable due to the
 read and  solved by  the optimization  solver GLPK  (GNU linear  Programming Kit
 available in the public domain)  \citep{glpk} through a Branch-and-Bound method.
 In practice, executing GLPK on a sensor node is obviously intractable due to the
-huge memory  use. Fortunately, to  solve the  optimization problem we  could use
+huge memory  use. Fortunately, to  solve the  optimization problem, the use of
 commercial  solvers  like  CPLEX  \citep{iamigo:cplex}  which  are  less  memory
 commercial  solvers  like  CPLEX  \citep{iamigo:cplex}  which  are  less  memory
-consuming and more efficient, or implement a lightweight heuristic. For example,
+consuming and more efficient is possible, or a lightweight heuristic may be implemented. For example,
 for  a WSN  of 200  sensor nodes,  a leader  node has  to deal  with constraints
 induced  by about  12 sensor  nodes.  In  that case,  to solve  the optimization
 problem  a memory  consumption of  more  than 1~MB  can be  observed with  GLPK,
 for  a WSN  of 200  sensor nodes,  a leader  node has  to deal  with constraints
 induced  by about  12 sensor  nodes.  In  that case,  to solve  the optimization
 problem  a memory  consumption of  more  than 1~MB  can be  observed with  GLPK,
@@ -799,8 +732,8 @@ proposed      by     \citep{ChinhVu}.       The      second     one,      called
 GAF~\citep{xu2001geography}, consists in dividing the monitoring area into fixed
 squares. Then, during  the decision phase, in each square,  one sensor is chosen
 to  remain  active   during  the  sensing  phase.   The  last   one,  the  DiLCO
 GAF~\citep{xu2001geography}, consists in dividing the monitoring area into fixed
 squares. Then, during  the decision phase, in each square,  one sensor is chosen
 to  remain  active   during  the  sensing  phase.   The  last   one,  the  DiLCO
-protocol~\citep{Idrees2}, is an improved version of a research work we presented
-in~\citep{idrees2014coverage}. Let us  notice that the PeCO  and DiLCO protocols
+protocol~\citep{Idrees2}, is an improved version of a research work presented
+in~\citep{idrees2014coverage}. PeCO  and DiLCO protocols
 are based on  the same framework. In particular, the  choice for the simulations
 of  a partitioning  in  16~subregions was  made because  it  corresponds to  the
 configuration producing  the best results for  DiLCO. Of course, this  number of
 are based on  the same framework. In particular, the  choice for the simulations
 of  a partitioning  in  16~subregions was  made because  it  corresponds to  the
 configuration producing  the best results for  DiLCO. Of course, this  number of
@@ -809,8 +742,9 @@ the number of sensors.  The protocols  are distinguished from one another by the
 formulation of the integer program providing the set of sensors which have to be
 activated  in each  sensing  phase.  The DiLCO  protocol  tries  to satisfy  the
 coverage of a set of primary points,  whereas the objective of the PeCO protocol
 formulation of the integer program providing the set of sensors which have to be
 activated  in each  sensing  phase.  The DiLCO  protocol  tries  to satisfy  the
 coverage of a set of primary points,  whereas the objective of the PeCO protocol
-is  to reach  a desired  level of  coverage for  each sensor  perimeter. In  our
-experimentations, we chose a level of coverage equal to one ($l=1$).
+is  to reach  a desired  level of  coverage for  each sensor  perimeter. In the
+experimentations, a level of coverage equal to one ($l=1$) is chosen
+.
 
 \subsubsection{Coverage Ratio}
 
 
 \subsubsection{Coverage Ratio}
 
@@ -839,7 +773,7 @@ allows later a substantial increase of the coverage performance.
 Minimizing the number of active sensor nodes in  each period is essential to minimize the
 energy   consumption    and   thus    to   maximize   the    network   lifetime.
 Figure~\ref{figure6}  shows the  average  active nodes  ratio  for 200  deployed
 Minimizing the number of active sensor nodes in  each period is essential to minimize the
 energy   consumption    and   thus    to   maximize   the    network   lifetime.
 Figure~\ref{figure6}  shows the  average  active nodes  ratio  for 200  deployed
-nodes.  We observe that DESK and GAF have 30.36~\% and 34.96~\% active nodes for
+nodes. DESK and GAF have 30.36~\% and 34.96~\% active nodes for
 the first fourteen  rounds, and the DiLCO and PeCO protocols  compete perfectly with
 only 17.92~\%  and 20.16~\% active nodes  during the same time  interval. As the
 number of periods increases, the PeCO protocol has a lower number of active nodes in
 the first fourteen  rounds, and the DiLCO and PeCO protocols  compete perfectly with
 only 17.92~\%  and 20.16~\% active nodes  during the same time  interval. As the
 number of periods increases, the PeCO protocol has a lower number of active nodes in
@@ -853,12 +787,12 @@ keeping a greater coverage ratio as shown in Figure \ref{figure5}.
 \label{figure6}
 \end{figure} 
 
 \label{figure6}
 \end{figure} 
 
-\subsubsection{\textcolor{green}{Energy Saving Ratio}
+\subsubsection{Energy Saving Ratio
 
 
 
 
-\textcolor{green}{The  simulation  results  show  that our  protocol  PeCO  saves
+The  simulation  results  show  that the  protocol  PeCO  saves
   efficiently energy by  turning off some sensors during the  sensing phase.  As
   efficiently energy by  turning off some sensors during the  sensing phase.  As
-  shown in  Figure~\ref{fig5}, GAF provides  better energy saving than  PeCO for
+  shown in  Figure~\ref{figure7}, GAF provides  better energy saving than  PeCO for
   the  first fifty  rounds. Indeed  GAF  balances the  energy consumption  among
   sensor nodes inside each small fixed grid  and thus permits to extend the life
   of sensors in each grid fairly. However, at  the same time it turns on a large
   the  first fifty  rounds. Indeed  GAF  balances the  energy consumption  among
   sensor nodes inside each small fixed grid  and thus permits to extend the life
   of sensors in each grid fairly. However, at  the same time it turns on a large
@@ -866,22 +800,22 @@ keeping a greater coverage ratio as shown in Figure \ref{figure5}.
   DESK algorithm  shows less energy  saving compared with other  approaches.  In
   comparison  with PeCO,  DiLCO protocol  usually provides  lower energy  saving
   ratios. Moreover,  it can  be noticed  that after  round fifty,  PeCO protocol
   DESK algorithm  shows less energy  saving compared with other  approaches.  In
   comparison  with PeCO,  DiLCO protocol  usually provides  lower energy  saving
   ratios. Moreover,  it can  be noticed  that after  round fifty,  PeCO protocol
-  exhibits the slowest decrease among all the considered protocols.}
+  exhibits the slowest decrease among all the considered protocols.
 
 \begin{figure}[h!]
 %\centering
 % \begin{multicols}{6}
 \centering
 
 \begin{figure}[h!]
 %\centering
 % \begin{multicols}{6}
 \centering
-\includegraphics[scale=0.5]{ESR.eps} %\\~ ~ ~(a)
-\caption{Energy Saving Ratio for 200 deployed nodes}
-\label{fig5}
+\includegraphics[scale=0.5]{figure7.eps} %\\~ ~ ~(a)
+\caption{Energy Saving Ratio for 200 deployed nodes.}
+\label{figure7}
 \end{figure}
 
 \subsubsection{Energy Consumption}
 
 The  effect  of  the  energy  consumed by  the  WSN  during  the  communication,
 computation,  listening,  active, and  sleep  status  is studied  for  different
 \end{figure}
 
 \subsubsection{Energy Consumption}
 
 The  effect  of  the  energy  consumed by  the  WSN  during  the  communication,
 computation,  listening,  active, and  sleep  status  is studied  for  different
-network densities  and the  four approaches  compared.  Figures~\ref{figure7}(a)
+network densities  and the  four approaches  compared.  Figures~\ref{figure8}(a)
 and (b)  illustrate the energy consumption  for different network sizes  and for
 $Lifetime_{95}$ and $Lifetime_{50}$.  The results show  that the PeCO protocol is the most
 competitive from the energy consumption point of view. As shown by both figures,
 and (b)  illustrate the energy consumption  for different network sizes  and for
 $Lifetime_{95}$ and $Lifetime_{50}$.  The results show  that the PeCO protocol is the most
 competitive from the energy consumption point of view. As shown by both figures,
@@ -890,59 +824,58 @@ resolution of the integer program is too  costly in energy, but the results show
 that it is very beneficial to lose a  bit of time in the selection of sensors to
 activate.  Indeed  the optimization program  allows to reduce  significantly the
 number of  active sensors  and also  the energy consumption  while keeping  a good
 that it is very beneficial to lose a  bit of time in the selection of sensors to
 activate.  Indeed  the optimization program  allows to reduce  significantly the
 number of  active sensors  and also  the energy consumption  while keeping  a good
-coverage level. Let  us notice that the energy overhead  when increasing network
+coverage level. The energy overhead  when increasing network
 size is the lowest with PeCO.
 
 \begin{figure}[h!]
   \centering
   \begin{tabular}{@{}cr@{}}
 size is the lowest with PeCO.
 
 \begin{figure}[h!]
   \centering
   \begin{tabular}{@{}cr@{}}
-    \includegraphics[scale=0.5]{figure7a.eps} & \raisebox{2.75cm}{(a)} \\
-    \includegraphics[scale=0.5]{figure7b.eps} & \raisebox{2.75cm}{(b)}
+    \includegraphics[scale=0.5]{figure8a.eps} & \raisebox{2.75cm}{(a)} \\
+    \includegraphics[scale=0.5]{figure8b.eps} & \raisebox{2.75cm}{(b)}
   \end{tabular}
   \caption{Energy consumption per period for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
   \end{tabular}
   \caption{Energy consumption per period for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
-  \label{figure7}
+  \label{figure8}
 \end{figure} 
 
 \subsubsection{Network Lifetime}
 
 \end{figure} 
 
 \subsubsection{Network Lifetime}
 
-We observe the  superiority of both the PeCO and DiLCO  protocols in comparison with
-the   two   other  approaches   in   prolonging   the  network   lifetime.    In
-Figures~\ref{figure8}(a) and  (b), $Lifetime_{95}$  and $Lifetime_{50}$ are  shown for
+In comparison with the   two   other  approaches, PeCO and DiLCO  protocols  are better for prolonging   the  network   lifetime.    In
+Figures~\ref{figure9}(a) and  (b), $Lifetime_{95}$  and $Lifetime_{50}$ are  shown for
 different  network  sizes.  As  can  be  seen  in  these figures,  the  lifetime
 increases with the size of the network,  and it is clearly larger for the DiLCO and
 PeCO protocols.  For  instance, for a network of 300~sensors  and coverage ratio
 different  network  sizes.  As  can  be  seen  in  these figures,  the  lifetime
 increases with the size of the network,  and it is clearly larger for the DiLCO and
 PeCO protocols.  For  instance, for a network of 300~sensors  and coverage ratio
-greater than  50\%, we can see  on Figure~\ref{figure8}(b) that the  lifetime is
+greater than  50\%, it can be observed on Figure~\ref{figure9}(b) that the  lifetime is
 about  twice  longer with  PeCO  compared  to  the DESK protocol.   The  performance
 about  twice  longer with  PeCO  compared  to  the DESK protocol.   The  performance
-difference    is   more    obvious    in    Figure~\ref{figure8}(b)   than    in
-Figure~\ref{figure8}(a) because the gain induced by our protocols increases with
+difference    is   more    obvious    in    Figure~\ref{figure9}(b)   than    in
+Figure~\ref{figure9}(a) because the gain induced by protocols (PeCO and DiLCO) increases with
 time, and the lifetime with a coverage over 50\% is far longer than with 95\%.
 
 \begin{figure}[h!]
   \centering
   \begin{tabular}{@{}cr@{}}
 time, and the lifetime with a coverage over 50\% is far longer than with 95\%.
 
 \begin{figure}[h!]
   \centering
   \begin{tabular}{@{}cr@{}}
-    \includegraphics[scale=0.5]{figure8a.eps} & \raisebox{2.75cm}{(a)} \\  
-    \includegraphics[scale=0.5]{figure8b.eps} & \raisebox{2.75cm}{(b)}
+    \includegraphics[scale=0.5]{figure9a.eps} & \raisebox{2.75cm}{(a)} \\  
+    \includegraphics[scale=0.5]{figure9b.eps} & \raisebox{2.75cm}{(b)}
   \end{tabular}
   \caption{Network Lifetime for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
   \end{tabular}
   \caption{Network Lifetime for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
-  \label{figure8}
+  \label{figure9}
 \end{figure} 
 
 \end{figure} 
 
-Figure~\ref{figure9} compares the lifetime coverage  of the DiLCO and PeCO protocols
-for  different   coverage  ratios.   We  denote  by   Protocol/70,  Protocol/80,
-Protocol/85, Protocol/90,  and Protocol/95 the  amount of time during  which the
+Figure~\ref{figure10} compares the lifetime coverage  of the DiLCO and PeCO protocols
+for  different   coverage  ratios.   Protocol/70,  Protocol/80,
+Protocol/85, Protocol/90,  and Protocol/95 correspond to the  amount of time during  which the
 network  can satisfy  an  area  coverage greater  than  $70\%$, $80\%$,  $85\%$,
 $90\%$, and  $95\%$ respectively,  where the  term Protocol  refers to  DiLCO or
 network  can satisfy  an  area  coverage greater  than  $70\%$, $80\%$,  $85\%$,
 $90\%$, and  $95\%$ respectively,  where the  term Protocol  refers to  DiLCO or
-PeCO.  \textcolor{green}{Indeed there are applications that do not require a 100\% coverage of the
+PeCO. Indeed there are applications that do not require a 100\% coverage of the
 area to be  monitored. For example, forest
 fire application might require complete coverage
 in summer seasons while only require 80$\%$ of the area to be covered in rainy seasons~\citep{li2011transforming}. As another example, birds habit study requires only 70$\%$-coverage at nighttime when the birds are sleeping while requires 100$\%$-coverage at daytime when the birds are active~\citep{1279193}. 
  PeCO always  outperforms DiLCO  for the  three  lower coverage  ratios, moreover  the
 area to be  monitored. For example, forest
 fire application might require complete coverage
 in summer seasons while only require 80$\%$ of the area to be covered in rainy seasons~\citep{li2011transforming}. As another example, birds habit study requires only 70$\%$-coverage at nighttime when the birds are sleeping while requires 100$\%$-coverage at daytime when the birds are active~\citep{1279193}. 
  PeCO always  outperforms DiLCO  for the  three  lower coverage  ratios, moreover  the
-improvements grow  with the network  size. DiLCO outperforms PeCO when the coverage ratio is required to be $>90\%$, but PeCO extends the network lifetime significantly when coverage ratio can be relaxed.}
+improvements grow  with the network  size. DiLCO outperforms PeCO when the coverage ratio is required to be $>90\%$, but PeCO extends the network lifetime significantly when coverage ratio can be relaxed.
 
 \begin{figure}[h!]
 
 \begin{figure}[h!]
-\centering \includegraphics[scale=0.55]{figure9.eps}
+\centering \includegraphics[scale=0.55]{figure10.eps}
 \caption{Network lifetime for different coverage ratios.}
 \caption{Network lifetime for different coverage ratios.}
-\label{figure9}
+\label{figure10}
 \end{figure} 
 
 \subsubsection{Impact of $\alpha$ and $\beta$ on PeCO's performance}
 \end{figure} 
 
 \subsubsection{Impact of $\alpha$ and $\beta$ on PeCO's performance}
@@ -954,12 +887,12 @@ hand,  the choice  of $\beta  \gg \alpha$  prevents the  overcoverage, and  also
 limits the activation of a large number of sensors, but as $\alpha$ is low, some
 areas  may  be   poorly  covered.   This  explains  the   results  obtained  for
 $Lifetime_{50}$ with  $\beta \gg  \alpha$: a  large number  of periods  with low
 limits the activation of a large number of sensors, but as $\alpha$ is low, some
 areas  may  be   poorly  covered.   This  explains  the   results  obtained  for
 $Lifetime_{50}$ with  $\beta \gg  \alpha$: a  large number  of periods  with low
-coverage ratio.  On the other hand, when  we choose $\alpha \gg \beta$, we favor
-the coverage even if some areas may  be overcovered, so a high coverage ratio is
+coverage ratio.  On the other hand, when  $\alpha \gg \beta$ is chosen, 
+the coverage is  favored even if some areas may  be overcovered, so a high coverage ratio is
 reached,  but a  large number  of sensors  are activated  to achieve  this goal.
 Therefore  the  network  lifetime  is  reduced.   The  choice  $\alpha=0.6$  and
 $\beta=0.4$ seems to  achieve the best compromise between  lifetime and coverage
 reached,  but a  large number  of sensors  are activated  to achieve  this goal.
 Therefore  the  network  lifetime  is  reduced.   The  choice  $\alpha=0.6$  and
 $\beta=0.4$ seems to  achieve the best compromise between  lifetime and coverage
-ratio.   That explains  why  we have  chosen this  setting  for the  experiments
+ratio.   That explains  why  this  setting  has been chosen for the  experiments
 presented in the previous subsections.
 
 
 presented in the previous subsections.
 
 
@@ -989,14 +922,14 @@ $\alpha$ & $\beta$ & $Lifetime_{50}$ & $Lifetime_{95}$ \\ \hline
 \section{Conclusion and Future Works}
 \label{sec:Conclusion and Future Works}
 
 \section{Conclusion and Future Works}
 \label{sec:Conclusion and Future Works}
 
-In this paper we have studied  the problem of perimeter coverage optimization in
-WSNs.   We  have  designed  a  new  protocol,  called  Perimeter-based  Coverage
-Optimization, which schedules nodes' activities  (wake up and sleep stages) with
+In this paper the problem of perimeter coverage optimization in
+WSNs has been studied.  A new  protocol called  Perimeter-based  Coverage
+Optimization is designed. This protocol schedules nodes' activities  (wake up and sleep stages) with
 the objective of maintaining a good  coverage ratio while maximizing the network
 lifetime.  This protocol  is applied in a distributed way  in regular subregions
 obtained after partitioning the area of interest in a preliminary step. It works
 in periods and  is based on the  resolution of an integer program  to select the
 the objective of maintaining a good  coverage ratio while maximizing the network
 lifetime.  This protocol  is applied in a distributed way  in regular subregions
 obtained after partitioning the area of interest in a preliminary step. It works
 in periods and  is based on the  resolution of an integer program  to select the
-subset  of sensors  operating in  active status  for each  period.  Our  work is
+subset  of sensors  operating in  active status  for each  period.  This  work is
 original  in so  far  as it  proposes  for  the first  time  an integer  program
 scheduling the  activation of sensors  based on their perimeter  coverage level,
 instead of using a set of targets/points to be covered. Several simulations have
 original  in so  far  as it  proposes  for  the first  time  an integer  program
 scheduling the  activation of sensors  based on their perimeter  coverage level,
 instead of using a set of targets/points to be covered. Several simulations have
@@ -1004,8 +937,8 @@ been carried out to evaluate the  proposed protocol. The simulation results show
 that  PeCO is  more  energy-efficient  than other  approaches,  with respect  to
 lifetime, coverage ratio, active sensors ratio, and energy consumption.
 
 that  PeCO is  more  energy-efficient  than other  approaches,  with respect  to
 lifetime, coverage ratio, active sensors ratio, and energy consumption.
 
-We plan to extend  our framework so that the schedules  are planned for multiple
-sensing  periods. We  also want  to  improve the  integer program  to take  into
+This framework will be extented so that the schedules  are planned for multiple
+sensing  periods. The  integer program  would be improved to take  into
 account heterogeneous sensors from both energy and node characteristics point of
 views.  Finally, it would be interesting  to implement the PeCO protocol using a
 sensor-testbed to evaluate it in real world applications.
 account heterogeneous sensors from both energy and node characteristics point of
 views.  Finally, it would be interesting  to implement the PeCO protocol using a
 sensor-testbed to evaluate it in real world applications.
@@ -1019,6 +952,6 @@ received support. This work is also partially funded by the Labex ACTION program
 (contract ANR-11-LABX-01-01).  
  
 \bibliographystyle{gENO}
 (contract ANR-11-LABX-01-01).  
  
 \bibliographystyle{gENO}
-\bibliography{biblio} %articleeo
+\bibliography{biblio} 
 
 \end{document}
 
 \end{document}
index 4faafaa6a289a7d2b84086dab2f19b696422a210..64383e2396c69ee7ab18fe68f7eb02c05b265600 100644 (file)
@@ -2,17 +2,12 @@
 % v4.0 released April 2013
 
 \documentclass{gENO2e}
 % v4.0 released April 2013
 
 \documentclass{gENO2e}
-%\usepackage[linesnumbered,ruled,vlined,commentsnumbered]{algorithm2e}
-%\renewcommand{\algorithmcfname}{ALGORITHM}
+
 \usepackage{indentfirst}
 \usepackage{color}
 \usepackage[algo2e,ruled,vlined]{algorithm2e}
 \begin{document}
 
 \usepackage{indentfirst}
 \usepackage{color}
 \usepackage[algo2e,ruled,vlined]{algorithm2e}
 \begin{document}
 
-%\jvol{00} \jnum{00} \jyear{2013} \jmonth{April}
-
-%\articletype{GUIDE}
-
 \title{{\itshape Perimeter-based Coverage Optimization \\
   to Improve Lifetime in Wireless Sensor Networks}}
 
 \title{{\itshape Perimeter-based Coverage Optimization \\
   to Improve Lifetime in Wireless Sensor Networks}}
 
@@ -29,11 +24,10 @@ The most important problem in a Wireless Sensor Network (WSN) is to optimize the
 use of its limited energy provision, so  that it can fulfill its monitoring task
 as  long as  possible. Among  known  available approaches  that can  be used  to
 improve  power  management,  lifetime coverage  optimization  provides  activity
 use of its limited energy provision, so  that it can fulfill its monitoring task
 as  long as  possible. Among  known  available approaches  that can  be used  to
 improve  power  management,  lifetime coverage  optimization  provides  activity
-scheduling which ensures  sensing coverage while minimizing the  energy cost. We
-propose such  an approach called Perimeter-based  Coverage Optimization protocol
-(PeCO). It  is a hybrid  of centralized and  distributed methods: the  region of
+scheduling which ensures  sensing coverage while minimizing the  energy cost. An approach called Perimeter-based  Coverage Optimization protocol
+(PeCO) is proposed. It is a hybrid  of centralized and  distributed methods: the  region of
 interest  is  first  subdivided  into   subregions  and  the  protocol  is  then
 interest  is  first  subdivided  into   subregions  and  the  protocol  is  then
-distributed among sensor  nodes in each subregion.  The novelty  of our approach
+distributed among sensor  nodes in each subregion.  The novelty  of the approach
 lies essentially  in the  formulation of a  new mathematical  optimization model
 based  on  the  perimeter  coverage   level  to  schedule  sensors'  activities.
 Extensive simulation experiments demonstrate that PeCO can offer longer lifetime
 lies essentially  in the  formulation of a  new mathematical  optimization model
 based  on  the  perimeter  coverage   level  to  schedule  sensors'  activities.
 Extensive simulation experiments demonstrate that PeCO can offer longer lifetime
@@ -89,15 +83,14 @@ This paper makes the following contributions :
   architecture.
 \item A new  mathematical optimization model is proposed.  Instead  of trying to
   cover a set of specified points/targets as  in most of the methods proposed in
   architecture.
 \item A new  mathematical optimization model is proposed.  Instead  of trying to
   cover a set of specified points/targets as  in most of the methods proposed in
-  the literature,  we formulate a  mixed-integer program based on  the perimeter
-  coverage of each sensor.  The model  involves integer variables to capture the
+  the literature, a  mixed-integer program based on  the perimeter
+  coverage of each sensor is formulated.  The model  involves integer variables to capture the
   deviations  between the  actual  level  of coverage  and  the required  level.
   Hence, an  optimal schedule will be  obtained by minimizing a  weighted sum of
   these deviations.
 \item Extensive  simulation experiments are  conducted using the  discrete event
   deviations  between the  actual  level  of coverage  and  the required  level.
   Hence, an  optimal schedule will be  obtained by minimizing a  weighted sum of
   these deviations.
 \item Extensive  simulation experiments are  conducted using the  discrete event
-  simulator OMNeT++,  to demonstrate  the efficiency of  our protocol.   We have
-  compared  the  PeCO  protocol  to  two approaches  found  in  the  literature:
-  DESK~\citep{ChinhVu} and GAF~\citep{xu2001geography}, and also to our previous
+  simulator OMNeT++,  to demonstrate  the efficiency of  the PeCO protocol.   The  PeCO  protocol has been compared to  two approaches  found  in  the  literature:
+  DESK~\citep{ChinhVu} and GAF~\citep{xu2001geography}, and also to the
   protocol DiLCO published in~\citep{Idrees2}. DiLCO  uses the same framework as
   PeCO but is based on another optimization model for sensor scheduling.
 \end{enumerate}
   protocol DiLCO published in~\citep{Idrees2}. DiLCO  uses the same framework as
   PeCO but is based on another optimization model for sensor scheduling.
 \end{enumerate}
@@ -134,7 +127,7 @@ algorithm  in  $O(nd~log~d)$ time  to  compute  the perimeter-coverage  of  each
 sensor.  $d$ denotes  the maximum  number  of sensors  that are  neighbors to  a
 sensor, and  $n$ is the  total number  of sensors in  the network. {\it  In PeCO
   protocol, instead  of determining the level  of coverage of a  set of discrete
 sensor.  $d$ denotes  the maximum  number  of sensors  that are  neighbors to  a
 sensor, and  $n$ is the  total number  of sensors in  the network. {\it  In PeCO
   protocol, instead  of determining the level  of coverage of a  set of discrete
-  points, our optimization model is  based on checking the perimeter-coverage of
+  points, the optimization model is  based on checking the perimeter-coverage of
   each sensor to activate a minimal number of sensors.}
 
 The major  approach to extend network  lifetime while preserving coverage  is to
   each sensor to activate a minimal number of sensors.}
 
 The major  approach to extend network  lifetime while preserving coverage  is to
@@ -212,8 +205,8 @@ decomposed into 4  phases: information exchange, leader  election, decision, and
 sensing. The  simulations show that DiLCO  is able to increase  the WSN lifetime
 and provides  improved coverage performance.  {\it  In the PeCO protocol,  a new
   mathematical optimization model is proposed. Instead  of trying to cover a set
 sensing. The  simulations show that DiLCO  is able to increase  the WSN lifetime
 and provides  improved coverage performance.  {\it  In the PeCO protocol,  a new
   mathematical optimization model is proposed. Instead  of trying to cover a set
-  of specified points/targets as in the  DiLCO protocol, we formulate an integer
-  program based  on the perimeter  coverage of  each sensor. The  model involves
+  of specified points/targets as in the  DiLCO protocol, an integer
+  program based  on the perimeter  coverage of  each sensor is formulated. The  model involves
   integer  variables to  capture  the  deviations between  the  actual level  of
   coverage and the  required level. The idea is that  an optimal scheduling will
   be obtained by minimizing a weighted sum of these deviations.}
   integer  variables to  capture  the  deviations between  the  actual level  of
   coverage and the  required level. The idea is that  an optimal scheduling will
   be obtained by minimizing a weighted sum of these deviations.}
@@ -221,12 +214,6 @@ and provides  improved coverage performance.  {\it  In the PeCO protocol,  a new
 \section{ The P{\scshape e}CO Protocol Description}
 \label{sec:The PeCO Protocol Description}
 
 \section{ The P{\scshape e}CO Protocol Description}
 \label{sec:The PeCO Protocol Description}
 
-%In  this  section,  the Perimeter-based  Coverage
-%Optimization protocol is decribed in details.  First we present the  assumptions we made and the models
-%we considered (in particular the perimeter coverage one), second we describe the
-%background idea of our protocol, and third  we give the outline of the algorithm
-%executed by each node.
-
 
 \subsection{Assumptions and Models}
 \label{CI}
 
 \subsection{Assumptions and Models}
 \label{CI}
@@ -242,7 +229,7 @@ algorithms. A Boolean disk coverage model,  which is the most widely used sensor
 coverage model  in the  literature, is  considered and all  sensor nodes  have a
 constant sensing range $R_s$.  Thus, all the space points within a disk centered
 at a sensor with  a radius equal to the sensing range are  said to be covered by
 coverage model  in the  literature, is  considered and all  sensor nodes  have a
 constant sensing range $R_s$.  Thus, all the space points within a disk centered
 at a sensor with  a radius equal to the sensing range are  said to be covered by
-this sensor.  We  also assume that the communication range  $R_c$ satisfies $R_c
+this sensor.  The communication range  $R_c$ is assumed to satisfy : $R_c
 \geq 2  \cdot R_s$.  In  fact, \citet{Zhang05}  proved that if  the transmission
 range fulfills the  previous hypothesis, the complete coverage of  a convex area
 implies connectivity among active nodes.
 \geq 2  \cdot R_s$.  In  fact, \citet{Zhang05}  proved that if  the transmission
 range fulfills the  previous hypothesis, the complete coverage of  a convex area
 implies connectivity among active nodes.
@@ -256,9 +243,9 @@ $k$~sensors) if and only if each  sensor in the network is $k$-perimeter-covered
 (perimeter covered by at least $k$ sensors).
  
 Figure~\ref{figure1}(a) shows the coverage of  sensor node~$0$.  On this figure,
 (perimeter covered by at least $k$ sensors).
  
 Figure~\ref{figure1}(a) shows the coverage of  sensor node~$0$.  On this figure,
-sensor~$0$  has nine  neighbors  and  we have  reported  on  its perimeter  (the
-perimeter of the  disk covered by the  sensor) for each neighbor  the two points
-resulting from  the intersection  of the  two sensing  areas.  These  points are
+sensor~$0$  has nine  neighbors. For each neighbor  the two points
+resulting from  the intersection  of the  two sensing  areas have been reported  on  its perimeter  (the
+perimeter of the  disk covered by the  sensor~$0$).  These  points are
 denoted for neighbor~$i$ by $iL$ and  $iR$, respectively for left and right from
 a  neighboring point  of view.   The  resulting couples  of intersection  points
 subdivide the perimeter of sensor~$0$ into portions called arcs.
 denoted for neighbor~$i$ by $iL$ and  $iR$, respectively for left and right from
 a  neighboring point  of view.   The  resulting couples  of intersection  points
 subdivide the perimeter of sensor~$0$ into portions called arcs.
@@ -364,7 +351,7 @@ optimization algorithm.
 \subsection{Main Idea}
 
 The WSN area of  interest is, in a first step,  divided into regular homogeneous
 \subsection{Main Idea}
 
 The WSN area of  interest is, in a first step,  divided into regular homogeneous
-subregions using a  divide-and-conquer algorithm. In a second  step our protocol
+subregions using a  divide-and-conquer algorithm. In a second  step the protocol
 will  be executed  in  a distributed  way in  each  subregion simultaneously  to
 schedule nodes' activities  for one sensing period. Sensor nodes  are assumed to
 be deployed  almost uniformly over the  region. The regular subdivision  is made
 will  be executed  in  a distributed  way in  each  subregion simultaneously  to
 schedule nodes' activities  for one sensing period. Sensor nodes  are assumed to
 be deployed  almost uniformly over the  region. The regular subdivision  is made
@@ -397,7 +384,7 @@ of the application.
 \label{figure4}
 \end{figure} 
 
 \label{figure4}
 \end{figure} 
 
-We define two types of packets to be used by the PeCO protocol:
+Two types of packets used by the PeCO protocol are defined:
 \begin{itemize} 
 \item INFO  packet: sent  by each  sensor node to  all the  nodes inside  a same
   subregion for information exchange.
 \begin{itemize} 
 \item INFO  packet: sent  by each  sensor node to  all the  nodes inside  a same
   subregion for information exchange.
@@ -424,10 +411,6 @@ applied by a sensor node $s_k$ where $k$ is the node index in the WSN.
 
 
 \begin{algorithm2e}      
 
 
 \begin{algorithm2e}      
- % \KwIn{all the parameters related to information exchange}
-%  \KwOut{$winer-node$ (: the id of the winner sensor node, which is the leader of current round)}
-%  \BlankLine
-  %\emph{Initialize the sensor node and determine it's position and subregion} \;
   \label{alg:PeCO}
   \caption{PeCO pseudocode}
   \eIf{$RE_k \geq E_{th}$}{
   \label{alg:PeCO}
   \caption{PeCO pseudocode}
   \eIf{$RE_k \geq E_{th}$}{
@@ -462,42 +445,6 @@ applied by a sensor node $s_k$ where $k$ is the node index in the WSN.
   }
 \end{algorithm2e}
 
   }
 \end{algorithm2e}
 
-%\begin{algorithm}
-%\noindent{\bf If} $RE_k \geq E_{th}$ {\bf then}\\
-%\hspace*{0.6cm} \emph{$s_k.status$ = COMMUNICATION;}\\
-%\hspace*{0.6cm}  \emph{Send $INFO()$ packet to other nodes in subregion;}\\
-%\hspace*{0.6cm}  \emph{Wait $INFO()$ packet from other nodes in subregion;}\\
-%\hspace*{0.6cm} \emph{Update K.CurrentSize;}\\
-%\hspace*{0.6cm}  \emph{LeaderID = Leader election;}\\
-%\hspace*{0.6cm} {\bf If} $ s_k.ID = LeaderID $ {\bf then}\\
-%\hspace*{1.2cm}   \emph{$s_k.status$ = COMPUTATION;}\\
-%\hspace*{1.2cm}{\bf If} \emph{$ s_k.ID $ is Not previously selected as a Leader} {\bf then}\\
-%\hspace*{1.8cm} \emph{ Execute the perimeter coverage model;}\\
-%\hspace*{1.2cm} {\bf end}\\
-%\hspace*{1.2cm}{\bf If} \emph{($s_k.ID $ is the same Previous Leader)~And~(K.CurrentSize = K.PreviousSize)}\\
-%\hspace*{1.8cm} \emph{ Use the same previous cover set for current sensing stage;}\\
-%\hspace*{1.2cm}  {\bf end}\\
-%\hspace*{1.2cm}  {\bf else}\\
-%\hspace*{1.8cm}\emph{Update $a^j_{ik}$; prepare data for IP~Algorithm;}\\
-%\hspace*{1.8cm} \emph{$\left\{\left(X_{1},\dots,X_{l},\dots,X_{K}\right)\right\}$ = Execute Integer Program Algorithm($K$);}\\
-%\hspace*{1.8cm} \emph{K.PreviousSize = K.CurrentSize;}\\
-%\hspace*{1.2cm}  {\bf end}\\
-%\hspace*{1.2cm}\emph{$s_k.status$ = COMMUNICATION;}\\
-%\hspace*{1.2cm}\emph{Send $ActiveSleep()$ to each node $l$ in subregion;}\\
-%\hspace*{1.2cm}\emph{Update $RE_k $;}\\
-%\hspace*{0.6cm}  {\bf end}\\
-%\hspace*{0.6cm}  {\bf else}\\
-%\hspace*{1.2cm}\emph{$s_k.status$ = LISTENING;}\\
-%\hspace*{1.2cm}\emph{Wait $ActiveSleep()$ packet from the Leader;}\\
-%\hspace*{1.2cm}\emph{Update $RE_k $;}\\
-%\hspace*{0.6cm}  {\bf end}\\
-%{\bf end}\\
-%{\bf else}\\
-%\hspace*{0.6cm} \emph{Exclude $s_k$ from entering in the current sensing stage;}\\
-%{\bf end}\\
-%\label{alg:PeCO}
-%\end{algorithm}
-
 In this  algorithm, $K.CurrentSize$ and $K.PreviousSize$  respectively represent
 the current number and the previous number  of living nodes in the subnetwork of
 the  subregion.   At the  beginning  of  the  first period  $K.PreviousSize$  is
 In this  algorithm, $K.CurrentSize$ and $K.PreviousSize$  respectively represent
 the current number and the previous number  of living nodes in the subnetwork of
 the  subregion.   At the  beginning  of  the  first period  $K.PreviousSize$  is
@@ -507,7 +454,7 @@ in  the current  period.   Each  sensor node  determines  its  position and  its
 subregion using an  embedded GPS or a location discovery  algorithm. After that,
 all the sensors collect position  coordinates, remaining energy, sensor node ID,
 and the number of their one-hop  live neighbors during the information exchange.
 subregion using an  embedded GPS or a location discovery  algorithm. After that,
 all the sensors collect position  coordinates, remaining energy, sensor node ID,
 and the number of their one-hop  live neighbors during the information exchange.
-\textcolor{green}{Both INFO packet and ActiveSleep packet contain two parts: header and data payload. The sensor ID is included in the header, where the header size is 8 bits. The data part includes position coordinates (64 bits), remaining energy (32 bits), and the number of one-hop live neighbors (8 bits). Therefore the size of the INFO packet is 112 bits. The ActiveSleep packet is 16 bits size, 8 bits for the header and 8 bits for data part that includes only sensor status (0 or 1).}
+Both INFO packet and ActiveSleep packet contain two parts: header and data payload. The sensor ID is included in the header, where the header size is 8 bits. The data part includes position coordinates (64 bits), remaining energy (32 bits), and the number of one-hop live neighbors (8 bits). Therefore the size of the INFO packet is 112 bits. The ActiveSleep packet is 16 bits size, 8 bits for the header and 8 bits for data part that includes only sensor status (0 or 1).
 The sensors  inside a same  region cooperate to  elect a leader.   The selection
 criteria for the leader are (in order  of priority):
 \begin{enumerate}
 The sensors  inside a same  region cooperate to  elect a leader.   The selection
 criteria for the leader are (in order  of priority):
 \begin{enumerate}
@@ -569,7 +516,7 @@ coverage level. As the number of  alive sensors decreases, it becomes impossible
 to reach  the desired level  of coverage  for all coverage  intervals. Therefore
 variables  $M^j_i$ and  $V^j_i$ are  introduced as  a measure  of the  deviation
 between the  desired number  of active  sensors in a  coverage interval  and the
 to reach  the desired level  of coverage  for all coverage  intervals. Therefore
 variables  $M^j_i$ and  $V^j_i$ are  introduced as  a measure  of the  deviation
 between the  desired number  of active  sensors in a  coverage interval  and the
-effective number.  And we try to  minimize these deviations, first  to force the
+effective number.  And these deviations are minimized, first  to force the
 activation of a minimal number of  sensors to ensure the desired coverage level,
 and if  the desired level  cannot be completely  satisfied, to reach  a coverage
 level as close as possible to the desired one.
 activation of a minimal number of  sensors to ensure the desired coverage level,
 and if  the desired level  cannot be completely  satisfied, to reach  a coverage
 level as close as possible to the desired one.
@@ -586,18 +533,6 @@ The coverage optimization problem can then be mathematically expressed as follow
   \end{aligned}
 \end{equation}
 
   \end{aligned}
 \end{equation}
 
-%\begin{equation} 
-%\left \{
-%\begin{array}{ll}
-%\min \sum_{j \in S} \sum_{i \in I_j} (\alpha^j_i ~ M^j_i + \beta^j_i ~ V^j_i ) & \\
-%\textrm{subject to :} &\\
-%\sum_{k \in A} ( a^j_{ik} ~ X_{k}) + M^j_i  \geq l \quad \forall i \in I_j, \forall j \in S\\
-%\sum_{k \in A} ( a^j_{ik} ~ X_{k}) - V^j_i  \leq l \quad \forall i \in I_j, \forall j \in S\\
-%X_{k} \in \{0,1\}, \forall k \in A \\
-%M^j_i, V^j_i \in \mathbb{R}^{+} 
-%\end{array}
-%\right.
-%\end{equation}
 
 If a given level of coverage $l$ is  required for one sensor, the sensor is said
 to be undercovered (respectively overcovered) if the level of coverage of one of
 
 If a given level of coverage $l$ is  required for one sensor, the sensor is said
 to be undercovered (respectively overcovered) if the level of coverage of one of
@@ -634,7 +569,7 @@ be alive during one sensing phase) are considered in the model.
 \subsection{Simulation Settings}
 
 The WSN  area of interest is  supposed to be divided  into 16~regular subregions
 \subsection{Simulation Settings}
 
 The WSN  area of interest is  supposed to be divided  into 16~regular subregions
-and   we  use   the  same   energy  consumption   model  as   in  our   previous
+and the  energy  consumption   model  used is described in previous
 work~\citep{Idrees2}.  Table~\ref{table3} gives the chosen parameters settings.
 
 \begin{table}[ht]
 work~\citep{Idrees2}.  Table~\ref{table3} gives the chosen parameters settings.
 
 \begin{table}[ht]
@@ -697,7 +632,7 @@ approach.
   because without  network connectivity a  sensor may not be  able to send  to a
   base station an event it has sensed.
 \item {\bf  Coverage Ratio (CR)} : it  measures how  well the  WSN is  able to
   because without  network connectivity a  sensor may not be  able to send  to a
   base station an event it has sensed.
 \item {\bf  Coverage Ratio (CR)} : it  measures how  well the  WSN is  able to
-  observe the area of interest. In our  case, the sensor field is discretized as
+  observe the area of interest. Here the sensor field is discretized as
   a regular grid, which yields the following equation:
   \begin{equation*}
     \scriptsize
   a regular grid, which yields the following equation:
   \begin{equation*}
     \scriptsize
@@ -707,7 +642,7 @@ approach.
   subregions during  the current sensing phase  and $N$ is total  number of grid
   points in the sensing field. A layout of $N~=~51~\times~26~=~1326$~grid points
   is considered in the simulations.
   subregions during  the current sensing phase  and $N$ is total  number of grid
   points in the sensing field. A layout of $N~=~51~\times~26~=~1326$~grid points
   is considered in the simulations.
-\item {\bf Active Sensors Ratio (ASR)}: a  major objective of our protocol is to
+\item {\bf Active Sensors Ratio (ASR)}: a  major objective of the proposed protocol is to
   activate as  few nodes  as possible,  in order  to minimize  the communication
   overhead and maximize the WSN lifetime. The active sensors ratio is defined as
   follows:
   activate as  few nodes  as possible,  in order  to minimize  the communication
   overhead and maximize the WSN lifetime. The active sensors ratio is defined as
   follows:
@@ -719,14 +654,12 @@ approach.
   sensing period~$p$, $R$  is the number of subregions, and  $|J|$ is the number
   of sensors in the network.
   
   sensing period~$p$, $R$  is the number of subregions, and  $|J|$ is the number
   of sensors in the network.
   
-\item {\bf \textcolor{green}{Energy Saving Ratio (ESR)}}:  
-\textcolor{green}{this metric, which shows the ability of a protocol to save energy, is defined by:
+\item {\bf Energy Saving Ratio (ESR)}:this metric, which shows the ability of a protocol to save energy, is defined by:
 \begin{equation*}
 \scriptsize
 \mbox{ESR}(\%) = \frac{\mbox{Number of alive sensors during this round}}
 {\mbox{Total number of sensors in the network}} \times 100.
 \end{equation*}  
 \begin{equation*}
 \scriptsize
 \mbox{ESR}(\%) = \frac{\mbox{Number of alive sensors during this round}}
 {\mbox{Total number of sensors in the network}} \times 100.
 \end{equation*}  
-  }
 \item {\bf Energy Consumption (EC)}: energy consumption can be seen as the total
   energy  consumed by  the  sensors during  $Lifetime_{95}$ or  $Lifetime_{50}$,
   divided by  the number of  periods. The value of  EC is computed  according to
 \item {\bf Energy Consumption (EC)}: energy consumption can be seen as the total
   energy  consumed by  the  sensors during  $Lifetime_{95}$ or  $Lifetime_{50}$,
   divided by  the number of  periods. The value of  EC is computed  according to
@@ -751,9 +684,9 @@ approach.
 
 \subsection{Simulation Results}
 
 
 \subsection{Simulation Results}
 
-In  order  to  assess and  analyze  the  performance  of  our protocol  we  have
-implemented  the   PeCO  protocol   in  OMNeT++~\citep{varga}   simulator.   The
-simulations were  run on a  DELL laptop  with an Intel  Core~i3~2370~M (1.8~GHz)
+
+The PeCO  protocol has been implemented  in  OMNeT++~\citep{varga}   simulator in  order  to  assess and  analyze  its  performance. 
+The simulations were  run on a  DELL laptop  with an Intel  Core~i3~2370~M (1.8~GHz)
 processor (2 cores)  whose MIPS (Million Instructions Per Second)  rate is equal
 to 35330.  To be consistent with  the use of a  sensor node based on  Atmels AVR
 ATmega103L microcontroller (6~MHz)  having a MIPS rate equal to  6, the original
 processor (2 cores)  whose MIPS (Million Instructions Per Second)  rate is equal
 to 35330.  To be consistent with  the use of a  sensor node based on  Atmels AVR
 ATmega103L microcontroller (6~MHz)  having a MIPS rate equal to  6, the original
@@ -785,9 +718,9 @@ to generate  the integer program  instance in a  standard format, which  is then
 read and  solved by  the optimization  solver GLPK  (GNU linear  Programming Kit
 available in the public domain)  \citep{glpk} through a Branch-and-Bound method.
 In practice, executing GLPK on a sensor node is obviously intractable due to the
 read and  solved by  the optimization  solver GLPK  (GNU linear  Programming Kit
 available in the public domain)  \citep{glpk} through a Branch-and-Bound method.
 In practice, executing GLPK on a sensor node is obviously intractable due to the
-huge memory  use. Fortunately, to  solve the  optimization problem we  could use
+huge memory  use. Fortunately, to  solve the  optimization problem, the use of
 commercial  solvers  like  CPLEX  \citep{iamigo:cplex}  which  are  less  memory
 commercial  solvers  like  CPLEX  \citep{iamigo:cplex}  which  are  less  memory
-consuming and more efficient, or implement a lightweight heuristic. For example,
+consuming and more efficient is possible, or a lightweight heuristic may be implemented. For example,
 for  a WSN  of 200  sensor nodes,  a leader  node has  to deal  with constraints
 induced  by about  12 sensor  nodes.  In  that case,  to solve  the optimization
 problem  a memory  consumption of  more  than 1~MB  can be  observed with  GLPK,
 for  a WSN  of 200  sensor nodes,  a leader  node has  to deal  with constraints
 induced  by about  12 sensor  nodes.  In  that case,  to solve  the optimization
 problem  a memory  consumption of  more  than 1~MB  can be  observed with  GLPK,
@@ -799,8 +732,8 @@ proposed      by     \citep{ChinhVu}.       The      second     one,      called
 GAF~\citep{xu2001geography}, consists in dividing the monitoring area into fixed
 squares. Then, during  the decision phase, in each square,  one sensor is chosen
 to  remain  active   during  the  sensing  phase.   The  last   one,  the  DiLCO
 GAF~\citep{xu2001geography}, consists in dividing the monitoring area into fixed
 squares. Then, during  the decision phase, in each square,  one sensor is chosen
 to  remain  active   during  the  sensing  phase.   The  last   one,  the  DiLCO
-protocol~\citep{Idrees2}, is an improved version of a research work we presented
-in~\citep{idrees2014coverage}. Let us  notice that the PeCO  and DiLCO protocols
+protocol~\citep{Idrees2}, is an improved version of a research work presented
+in~\citep{idrees2014coverage}. PeCO  and DiLCO protocols
 are based on  the same framework. In particular, the  choice for the simulations
 of  a partitioning  in  16~subregions was  made because  it  corresponds to  the
 configuration producing  the best results for  DiLCO. Of course, this  number of
 are based on  the same framework. In particular, the  choice for the simulations
 of  a partitioning  in  16~subregions was  made because  it  corresponds to  the
 configuration producing  the best results for  DiLCO. Of course, this  number of
@@ -809,8 +742,9 @@ the number of sensors.  The protocols  are distinguished from one another by the
 formulation of the integer program providing the set of sensors which have to be
 activated  in each  sensing  phase.  The DiLCO  protocol  tries  to satisfy  the
 coverage of a set of primary points,  whereas the objective of the PeCO protocol
 formulation of the integer program providing the set of sensors which have to be
 activated  in each  sensing  phase.  The DiLCO  protocol  tries  to satisfy  the
 coverage of a set of primary points,  whereas the objective of the PeCO protocol
-is  to reach  a desired  level of  coverage for  each sensor  perimeter. In  our
-experimentations, we chose a level of coverage equal to one ($l=1$).
+is  to reach  a desired  level of  coverage for  each sensor  perimeter. In the
+experimentations, a level of coverage equal to one ($l=1$) is chosen
+.
 
 \subsubsection{Coverage Ratio}
 
 
 \subsubsection{Coverage Ratio}
 
@@ -839,7 +773,7 @@ allows later a substantial increase of the coverage performance.
 Minimizing the number of active sensor nodes in  each period is essential to minimize the
 energy   consumption    and   thus    to   maximize   the    network   lifetime.
 Figure~\ref{figure6}  shows the  average  active nodes  ratio  for 200  deployed
 Minimizing the number of active sensor nodes in  each period is essential to minimize the
 energy   consumption    and   thus    to   maximize   the    network   lifetime.
 Figure~\ref{figure6}  shows the  average  active nodes  ratio  for 200  deployed
-nodes.  We observe that DESK and GAF have 30.36~\% and 34.96~\% active nodes for
+nodes. DESK and GAF have 30.36~\% and 34.96~\% active nodes for
 the first fourteen  rounds, and the DiLCO and PeCO protocols  compete perfectly with
 only 17.92~\%  and 20.16~\% active nodes  during the same time  interval. As the
 number of periods increases, the PeCO protocol has a lower number of active nodes in
 the first fourteen  rounds, and the DiLCO and PeCO protocols  compete perfectly with
 only 17.92~\%  and 20.16~\% active nodes  during the same time  interval. As the
 number of periods increases, the PeCO protocol has a lower number of active nodes in
@@ -853,12 +787,12 @@ keeping a greater coverage ratio as shown in Figure \ref{figure5}.
 \label{figure6}
 \end{figure} 
 
 \label{figure6}
 \end{figure} 
 
-\subsubsection{\textcolor{green}{Energy Saving Ratio}
+\subsubsection{Energy Saving Ratio
 
 
 
 
-\textcolor{green}{The  simulation  results  show  that our  protocol  PeCO  saves
+The  simulation  results  show  that the  protocol  PeCO  saves
   efficiently energy by  turning off some sensors during the  sensing phase.  As
   efficiently energy by  turning off some sensors during the  sensing phase.  As
-  shown in  Figure~\ref{fig5}, GAF provides  better energy saving than  PeCO for
+  shown in  Figure~\ref{figure7}, GAF provides  better energy saving than  PeCO for
   the  first fifty  rounds. Indeed  GAF  balances the  energy consumption  among
   sensor nodes inside each small fixed grid  and thus permits to extend the life
   of sensors in each grid fairly. However, at  the same time it turns on a large
   the  first fifty  rounds. Indeed  GAF  balances the  energy consumption  among
   sensor nodes inside each small fixed grid  and thus permits to extend the life
   of sensors in each grid fairly. However, at  the same time it turns on a large
@@ -866,22 +800,22 @@ keeping a greater coverage ratio as shown in Figure \ref{figure5}.
   DESK algorithm  shows less energy  saving compared with other  approaches.  In
   comparison  with PeCO,  DiLCO protocol  usually provides  lower energy  saving
   ratios. Moreover,  it can  be noticed  that after  round fifty,  PeCO protocol
   DESK algorithm  shows less energy  saving compared with other  approaches.  In
   comparison  with PeCO,  DiLCO protocol  usually provides  lower energy  saving
   ratios. Moreover,  it can  be noticed  that after  round fifty,  PeCO protocol
-  exhibits the slowest decrease among all the considered protocols.}
+  exhibits the slowest decrease among all the considered protocols.
 
 \begin{figure}[h!]
 %\centering
 % \begin{multicols}{6}
 \centering
 
 \begin{figure}[h!]
 %\centering
 % \begin{multicols}{6}
 \centering
-\includegraphics[scale=0.5]{ESR.eps} %\\~ ~ ~(a)
-\caption{Energy Saving Ratio for 200 deployed nodes}
-\label{fig5}
+\includegraphics[scale=0.5]{figure7.eps} %\\~ ~ ~(a)
+\caption{Energy Saving Ratio for 200 deployed nodes.}
+\label{figure7}
 \end{figure}
 
 \subsubsection{Energy Consumption}
 
 The  effect  of  the  energy  consumed by  the  WSN  during  the  communication,
 computation,  listening,  active, and  sleep  status  is studied  for  different
 \end{figure}
 
 \subsubsection{Energy Consumption}
 
 The  effect  of  the  energy  consumed by  the  WSN  during  the  communication,
 computation,  listening,  active, and  sleep  status  is studied  for  different
-network densities  and the  four approaches  compared.  Figures~\ref{figure7}(a)
+network densities  and the  four approaches  compared.  Figures~\ref{figure8}(a)
 and (b)  illustrate the energy consumption  for different network sizes  and for
 $Lifetime_{95}$ and $Lifetime_{50}$.  The results show  that the PeCO protocol is the most
 competitive from the energy consumption point of view. As shown by both figures,
 and (b)  illustrate the energy consumption  for different network sizes  and for
 $Lifetime_{95}$ and $Lifetime_{50}$.  The results show  that the PeCO protocol is the most
 competitive from the energy consumption point of view. As shown by both figures,
@@ -890,59 +824,58 @@ resolution of the integer program is too  costly in energy, but the results show
 that it is very beneficial to lose a  bit of time in the selection of sensors to
 activate.  Indeed  the optimization program  allows to reduce  significantly the
 number of  active sensors  and also  the energy consumption  while keeping  a good
 that it is very beneficial to lose a  bit of time in the selection of sensors to
 activate.  Indeed  the optimization program  allows to reduce  significantly the
 number of  active sensors  and also  the energy consumption  while keeping  a good
-coverage level. Let  us notice that the energy overhead  when increasing network
+coverage level. The energy overhead  when increasing network
 size is the lowest with PeCO.
 
 \begin{figure}[h!]
   \centering
   \begin{tabular}{@{}cr@{}}
 size is the lowest with PeCO.
 
 \begin{figure}[h!]
   \centering
   \begin{tabular}{@{}cr@{}}
-    \includegraphics[scale=0.5]{figure7a.eps} & \raisebox{2.75cm}{(a)} \\
-    \includegraphics[scale=0.5]{figure7b.eps} & \raisebox{2.75cm}{(b)}
+    \includegraphics[scale=0.5]{figure8a.eps} & \raisebox{2.75cm}{(a)} \\
+    \includegraphics[scale=0.5]{figure8b.eps} & \raisebox{2.75cm}{(b)}
   \end{tabular}
   \caption{Energy consumption per period for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
   \end{tabular}
   \caption{Energy consumption per period for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
-  \label{figure7}
+  \label{figure8}
 \end{figure} 
 
 \subsubsection{Network Lifetime}
 
 \end{figure} 
 
 \subsubsection{Network Lifetime}
 
-We observe the  superiority of both the PeCO and DiLCO  protocols in comparison with
-the   two   other  approaches   in   prolonging   the  network   lifetime.    In
-Figures~\ref{figure8}(a) and  (b), $Lifetime_{95}$  and $Lifetime_{50}$ are  shown for
+In comparison with the   two   other  approaches, PeCO and DiLCO  protocols  are better for prolonging   the  network   lifetime.    In
+Figures~\ref{figure9}(a) and  (b), $Lifetime_{95}$  and $Lifetime_{50}$ are  shown for
 different  network  sizes.  As  can  be  seen  in  these figures,  the  lifetime
 increases with the size of the network,  and it is clearly larger for the DiLCO and
 PeCO protocols.  For  instance, for a network of 300~sensors  and coverage ratio
 different  network  sizes.  As  can  be  seen  in  these figures,  the  lifetime
 increases with the size of the network,  and it is clearly larger for the DiLCO and
 PeCO protocols.  For  instance, for a network of 300~sensors  and coverage ratio
-greater than  50\%, we can see  on Figure~\ref{figure8}(b) that the  lifetime is
+greater than  50\%, it can be observed on Figure~\ref{figure9}(b) that the  lifetime is
 about  twice  longer with  PeCO  compared  to  the DESK protocol.   The  performance
 about  twice  longer with  PeCO  compared  to  the DESK protocol.   The  performance
-difference    is   more    obvious    in    Figure~\ref{figure8}(b)   than    in
-Figure~\ref{figure8}(a) because the gain induced by our protocols increases with
+difference    is   more    obvious    in    Figure~\ref{figure9}(b)   than    in
+Figure~\ref{figure9}(a) because the gain induced by protocols (PeCO and DiLCO) increases with
 time, and the lifetime with a coverage over 50\% is far longer than with 95\%.
 
 \begin{figure}[h!]
   \centering
   \begin{tabular}{@{}cr@{}}
 time, and the lifetime with a coverage over 50\% is far longer than with 95\%.
 
 \begin{figure}[h!]
   \centering
   \begin{tabular}{@{}cr@{}}
-    \includegraphics[scale=0.5]{figure8a.eps} & \raisebox{2.75cm}{(a)} \\  
-    \includegraphics[scale=0.5]{figure8b.eps} & \raisebox{2.75cm}{(b)}
+    \includegraphics[scale=0.5]{figure9a.eps} & \raisebox{2.75cm}{(a)} \\  
+    \includegraphics[scale=0.5]{figure9b.eps} & \raisebox{2.75cm}{(b)}
   \end{tabular}
   \caption{Network Lifetime for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
   \end{tabular}
   \caption{Network Lifetime for (a)~$Lifetime_{95}$ and (b)~$Lifetime_{50}$.}
-  \label{figure8}
+  \label{figure9}
 \end{figure} 
 
 \end{figure} 
 
-Figure~\ref{figure9} compares the lifetime coverage  of the DiLCO and PeCO protocols
-for  different   coverage  ratios.   We  denote  by   Protocol/70,  Protocol/80,
-Protocol/85, Protocol/90,  and Protocol/95 the  amount of time during  which the
+Figure~\ref{figure10} compares the lifetime coverage  of the DiLCO and PeCO protocols
+for  different   coverage  ratios.   Protocol/70,  Protocol/80,
+Protocol/85, Protocol/90,  and Protocol/95 correspond to the  amount of time during  which the
 network  can satisfy  an  area  coverage greater  than  $70\%$, $80\%$,  $85\%$,
 $90\%$, and  $95\%$ respectively,  where the  term Protocol  refers to  DiLCO or
 network  can satisfy  an  area  coverage greater  than  $70\%$, $80\%$,  $85\%$,
 $90\%$, and  $95\%$ respectively,  where the  term Protocol  refers to  DiLCO or
-PeCO.  \textcolor{green}{Indeed there are applications that do not require a 100\% coverage of the
+PeCO. Indeed there are applications that do not require a 100\% coverage of the
 area to be  monitored. For example, forest
 fire application might require complete coverage
 in summer seasons while only require 80$\%$ of the area to be covered in rainy seasons~\citep{li2011transforming}. As another example, birds habit study requires only 70$\%$-coverage at nighttime when the birds are sleeping while requires 100$\%$-coverage at daytime when the birds are active~\citep{1279193}. 
  PeCO always  outperforms DiLCO  for the  three  lower coverage  ratios, moreover  the
 area to be  monitored. For example, forest
 fire application might require complete coverage
 in summer seasons while only require 80$\%$ of the area to be covered in rainy seasons~\citep{li2011transforming}. As another example, birds habit study requires only 70$\%$-coverage at nighttime when the birds are sleeping while requires 100$\%$-coverage at daytime when the birds are active~\citep{1279193}. 
  PeCO always  outperforms DiLCO  for the  three  lower coverage  ratios, moreover  the
-improvements grow  with the network  size. DiLCO outperforms PeCO when the coverage ratio is required to be $>90\%$, but PeCO extends the network lifetime significantly when coverage ratio can be relaxed.}
+improvements grow  with the network  size. DiLCO outperforms PeCO when the coverage ratio is required to be $>90\%$, but PeCO extends the network lifetime significantly when coverage ratio can be relaxed.
 
 \begin{figure}[h!]
 
 \begin{figure}[h!]
-\centering \includegraphics[scale=0.55]{figure9.eps}
+\centering \includegraphics[scale=0.55]{figure10.eps}
 \caption{Network lifetime for different coverage ratios.}
 \caption{Network lifetime for different coverage ratios.}
-\label{figure9}
+\label{figure10}
 \end{figure} 
 
 \subsubsection{Impact of $\alpha$ and $\beta$ on PeCO's performance}
 \end{figure} 
 
 \subsubsection{Impact of $\alpha$ and $\beta$ on PeCO's performance}
@@ -954,15 +887,15 @@ hand,  the choice  of $\beta  \gg \alpha$  prevents the  overcoverage, and  also
 limits the activation of a large number of sensors, but as $\alpha$ is low, some
 areas  may  be   poorly  covered.   This  explains  the   results  obtained  for
 $Lifetime_{50}$ with  $\beta \gg  \alpha$: a  large number  of periods  with low
 limits the activation of a large number of sensors, but as $\alpha$ is low, some
 areas  may  be   poorly  covered.   This  explains  the   results  obtained  for
 $Lifetime_{50}$ with  $\beta \gg  \alpha$: a  large number  of periods  with low
-coverage ratio.  On the other hand, when  we choose $\alpha \gg \beta$, we favor
-the coverage even if some areas may  be overcovered, so a high coverage ratio is
+coverage ratio.  On the other hand, when  $\alpha \gg \beta$ is chosen, 
+the coverage is  favored even if some areas may  be overcovered, so a high coverage ratio is
 reached,  but a  large number  of sensors  are activated  to achieve  this goal.
 Therefore  the  network  lifetime  is  reduced.   The  choice  $\alpha=0.6$  and
 $\beta=0.4$ seems to  achieve the best compromise between  lifetime and coverage
 reached,  but a  large number  of sensors  are activated  to achieve  this goal.
 Therefore  the  network  lifetime  is  reduced.   The  choice  $\alpha=0.6$  and
 $\beta=0.4$ seems to  achieve the best compromise between  lifetime and coverage
-ratio.   That explains  why  we have  chosen this  setting  for the  experiments
+ratio.   That explains  why  this  setting  has been chosen for the  experiments
 presented in the previous subsections.
 
 presented in the previous subsections.
 
-%As can be seen in Table~\ref{my-labelx},  it is obvious and clear that when $\alpha$ decreased and $\beta$ increased by any step, the network lifetime for $Lifetime_{50}$ increased and the $Lifetime_{95}$ decreased. Therefore, selecting the values of $\alpha$ and $\beta$ depend on the application type used in the sensor nework. In PeCO protocol, $\alpha$ and $\beta$ are chosen based on the largest value of network lifetime for $Lifetime_{95}$.
+
 
 \begin{table}[h]
 \centering
 
 \begin{table}[h]
 \centering
@@ -989,14 +922,14 @@ $\alpha$ & $\beta$ & $Lifetime_{50}$ & $Lifetime_{95}$ \\ \hline
 \section{Conclusion and Future Works}
 \label{sec:Conclusion and Future Works}
 
 \section{Conclusion and Future Works}
 \label{sec:Conclusion and Future Works}
 
-In this paper we have studied  the problem of perimeter coverage optimization in
-WSNs.   We  have  designed  a  new  protocol,  called  Perimeter-based  Coverage
-Optimization, which schedules nodes' activities  (wake up and sleep stages) with
+In this paper the problem of perimeter coverage optimization in
+WSNs has been studied.  A new  protocol called  Perimeter-based  Coverage
+Optimization is designed. This protocol schedules nodes' activities  (wake up and sleep stages) with
 the objective of maintaining a good  coverage ratio while maximizing the network
 lifetime.  This protocol  is applied in a distributed way  in regular subregions
 obtained after partitioning the area of interest in a preliminary step. It works
 in periods and  is based on the  resolution of an integer program  to select the
 the objective of maintaining a good  coverage ratio while maximizing the network
 lifetime.  This protocol  is applied in a distributed way  in regular subregions
 obtained after partitioning the area of interest in a preliminary step. It works
 in periods and  is based on the  resolution of an integer program  to select the
-subset  of sensors  operating in  active status  for each  period.  Our  work is
+subset  of sensors  operating in  active status  for each  period.  This  work is
 original  in so  far  as it  proposes  for  the first  time  an integer  program
 scheduling the  activation of sensors  based on their perimeter  coverage level,
 instead of using a set of targets/points to be covered. Several simulations have
 original  in so  far  as it  proposes  for  the first  time  an integer  program
 scheduling the  activation of sensors  based on their perimeter  coverage level,
 instead of using a set of targets/points to be covered. Several simulations have
@@ -1004,8 +937,8 @@ been carried out to evaluate the  proposed protocol. The simulation results show
 that  PeCO is  more  energy-efficient  than other  approaches,  with respect  to
 lifetime, coverage ratio, active sensors ratio, and energy consumption.
 
 that  PeCO is  more  energy-efficient  than other  approaches,  with respect  to
 lifetime, coverage ratio, active sensors ratio, and energy consumption.
 
-We plan to extend  our framework so that the schedules  are planned for multiple
-sensing  periods. We  also want  to  improve the  integer program  to take  into
+This framework will be extented so that the schedules  are planned for multiple
+sensing  periods. The  integer program  would be improved to take  into
 account heterogeneous sensors from both energy and node characteristics point of
 views.  Finally, it would be interesting  to implement the PeCO protocol using a
 sensor-testbed to evaluate it in real world applications.
 account heterogeneous sensors from both energy and node characteristics point of
 views.  Finally, it would be interesting  to implement the PeCO protocol using a
 sensor-testbed to evaluate it in real world applications.
diff --git a/PeCO-EO/figure7a.eps b/PeCO-EO/figure7a.eps
deleted file mode 100644 (file)
index 25a32bc..0000000
+++ /dev/null
@@ -1,882 +0,0 @@
-%!PS-Adobe-2.0 EPSF-2.0
-%%BoundingBox: 53 53 545 402
-%%HiResBoundingBox: 54 53.5 544.5 401.5
-%%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Mon Feb  2 16:10:03 2015
-%%EndComments
-% EPSF created by ps2eps 1.68
-%%BeginProlog
-save
-countdictstack
-mark
-newpath
-/showpage {} def
-/setpagedevice {pop} def
-%%EndProlog
-%%Page 1 1
-%%BeginProlog
-/gnudict 256 dict def
-gnudict begin
-%
-% The following true/false flags may be edited by hand if desired.
-% The unit line width and grayscale image gamma correction may also be changed.
-%
-/Color false def
-/Blacktext false def
-/Solid false def
-/Dashlength 1 def
-/Landscape false def
-/Level1 false def
-/Rounded false def
-/ClipToBoundingBox false def
-/SuppressPDFMark false def
-/TransparentPatterns false def
-/gnulinewidth 5.000 def
-/userlinewidth gnulinewidth def
-/Gamma 1.0 def
-/BackgroundColor {-1.000 -1.000 -1.000} def
-%
-/vshift -36 def
-/dl1 {
-  10.0 Dashlength mul mul
-  Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if
-} def
-/dl2 {
-  10.0 Dashlength mul mul
-  Rounded { currentlinewidth 0.75 mul add } if
-} def
-/hpt_ 31.5 def
-/vpt_ 31.5 def
-/hpt hpt_ def
-/vpt vpt_ def
-/doclip {
-  ClipToBoundingBox {
-    newpath 50 50 moveto 554 50 lineto 554 410 lineto 50 410 lineto closepath
-    clip
-  } if
-} def
-%
-% Gnuplot Prolog Version 4.4 (August 2010)
-%
-%/SuppressPDFMark true def
-%
-/M {moveto} bind def
-/L {lineto} bind def
-/R {rmoveto} bind def
-/V {rlineto} bind def
-/N {newpath moveto} bind def
-/Z {closepath} bind def
-/C {setrgbcolor} bind def
-/f {rlineto fill} bind def
-/g {setgray} bind def
-/Gshow {show} def   % May be redefined later in the file to support UTF-8
-/vpt2 vpt 2 mul def
-/hpt2 hpt 2 mul def
-/Lshow {currentpoint stroke M 0 vshift R 
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R 
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
-  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def
-/DL {Color {setrgbcolor Solid {pop []} if 0 setdash}
- {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def
-/BL {stroke userlinewidth 2 mul setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-/AL {stroke userlinewidth 2 div setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-/UL {dup gnulinewidth mul /userlinewidth exch def
-       dup 1 lt {pop 1} if 10 mul /udl exch def} def
-/PL {stroke userlinewidth setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-3.8 setmiterlimit
-% Default Line colors
-/LCw {1 1 1} def
-/LCb {0 0 0} def
-/LCa {0 0 0} def
-/LC0 {1 0 0} def
-/LC1 {0 1 0} def
-/LC2 {0 0 1} def
-/LC3 {1 0 1} def
-/LC4 {0 1 1} def
-/LC5 {1 1 0} def
-/LC6 {0 0 0} def
-/LC7 {1 0.3 0} def
-/LC8 {0.5 0.5 0.5} def
-% Default Line Types
-/LTw {PL [] 1 setgray} def
-/LTb {BL [] LCb DL} def
-/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def
-/LT0 {PL [] LC0 DL} def
-/LT1 {PL [4 dl1 2 dl2] LC1 DL} def
-/LT2 {PL [2 dl1 3 dl2] LC2 DL} def
-/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def
-/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def
-/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def
-/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def
-/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def
-/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def
-/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def
-/Dia {stroke [] 0 setdash 2 copy vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath stroke
-  Pnt} def
-/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V
-  currentpoint stroke M
-  hpt neg vpt neg R hpt2 0 V stroke
- } def
-/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath stroke
-  Pnt} def
-/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M
-  hpt2 vpt2 neg V currentpoint stroke M
-  hpt2 neg 0 R hpt2 vpt2 V stroke} def
-/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath stroke
-  Pnt} def
-/Star {2 copy Pls Crs} def
-/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath fill} def
-/TriUF {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath fill} def
-/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath stroke
-  Pnt} def
-/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath fill} def
-/DiaF {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath fill} def
-/Pent {stroke [] 0 setdash 2 copy gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath stroke grestore Pnt} def
-/PentF {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath fill grestore} def
-/Circle {stroke [] 0 setdash 2 copy
-  hpt 0 360 arc stroke Pnt} def
-/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def
-/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def
-/C1 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C2 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C3 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C4 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 180 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C5 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc
-       2 copy moveto
-       2 copy vpt 180 270 arc closepath fill
-       vpt 0 360 arc} bind def
-/C6 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C7 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C8 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 270 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C9 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 270 450 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
-       2 copy moveto
-       2 copy vpt 90 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C11 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 180 arc closepath fill
-       2 copy moveto
-       2 copy vpt 270 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C12 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 180 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C13 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc closepath fill
-       2 copy moveto
-       2 copy vpt 180 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C14 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 360 arc closepath fill
-       vpt 0 360 arc} bind def
-/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
-       neg 0 rlineto closepath} bind def
-/Square {dup Rec} bind def
-/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def
-/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def
-/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def
-/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
-/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def
-/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
-/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill
-       exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
-/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def
-/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
-       2 copy vpt Square fill Bsquare} bind def
-/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def
-/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def
-/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
-       Bsquare} bind def
-/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
-       Bsquare} bind def
-/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def
-/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
-       2 copy vpt Square fill Bsquare} bind def
-/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
-       2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
-/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def
-/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def
-/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def
-/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def
-/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def
-/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def
-/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def
-/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def
-/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def
-/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def
-/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def
-/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def
-/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def
-/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def
-/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def
-/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def
-/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def
-/DiaE {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath stroke} def
-/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath stroke} def
-/TriUE {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath stroke} def
-/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath stroke} def
-/PentE {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath stroke grestore} def
-/CircE {stroke [] 0 setdash 
-  hpt 0 360 arc stroke} def
-/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def
-/DiaW {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V Opaque stroke} def
-/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V Opaque stroke} def
-/TriUW {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V Opaque stroke} def
-/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V Opaque stroke} def
-/PentW {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  Opaque stroke grestore} def
-/CircW {stroke [] 0 setdash 
-  hpt 0 360 arc Opaque stroke} def
-/BoxFill {gsave Rec 1 setgray fill grestore} def
-/Density {
-  /Fillden exch def
-  currentrgbcolor
-  /ColB exch def /ColG exch def /ColR exch def
-  /ColR ColR Fillden mul Fillden sub 1 add def
-  /ColG ColG Fillden mul Fillden sub 1 add def
-  /ColB ColB Fillden mul Fillden sub 1 add def
-  ColR ColG ColB setrgbcolor} def
-/BoxColFill {gsave Rec PolyFill} def
-/PolyFill {gsave Density fill grestore grestore} def
-/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def
-%
-% PostScript Level 1 Pattern Fill routine for rectangles
-% Usage: x y w h s a XX PatternFill
-%      x,y = lower left corner of box to be filled
-%      w,h = width and height of box
-%        a = angle in degrees between lines and x-axis
-%       XX = 0/1 for no/yes cross-hatch
-%
-/PatternFill {gsave /PFa [ 9 2 roll ] def
-  PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
-  PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
-  gsave 1 setgray fill grestore clip
-  currentlinewidth 0.5 mul setlinewidth
-  /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
-  0 0 M PFa 5 get rotate PFs -2 div dup translate
-  0 1 PFs PFa 4 get div 1 add floor cvi
-       {PFa 4 get mul 0 M 0 PFs V} for
-  0 PFa 6 get ne {
-       0 1 PFs PFa 4 get div 1 add floor cvi
-       {PFa 4 get mul 0 2 1 roll M PFs 0 V} for
- } if
-  stroke grestore} def
-%
-/languagelevel where
- {pop languagelevel} {1} ifelse
- 2 lt
-       {/InterpretLevel1 true def}
-       {/InterpretLevel1 Level1 def}
- ifelse
-%
-% PostScript level 2 pattern fill definitions
-%
-/Level2PatternFill {
-/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8}
-       bind def
-/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} 
->> matrix makepattern
-/Pat1 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke
-       0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke}
->> matrix makepattern
-/Pat2 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L
-       8 8 L 8 0 L 0 0 L fill}
->> matrix makepattern
-/Pat3 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L
-       0 12 M 12 0 L stroke}
->> matrix makepattern
-/Pat4 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L
-       0 -4 M 12 8 L stroke}
->> matrix makepattern
-/Pat5 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L
-       0 12 M 8 -4 L 4 12 M 10 0 L stroke}
->> matrix makepattern
-/Pat6 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L
-       0 -4 M 8 12 L 4 -4 M 10 8 L stroke}
->> matrix makepattern
-/Pat7 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L
-       12 0 M -4 8 L 12 4 M 0 10 L stroke}
->> matrix makepattern
-/Pat8 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L
-       -4 0 M 12 8 L -4 4 M 8 10 L stroke}
->> matrix makepattern
-/Pat9 exch def
-/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def
-/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def
-/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def
-/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def
-/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def
-/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def
-/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def
-} def
-%
-%
-%End of PostScript Level 2 code
-%
-/PatternBgnd {
-  TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse
-} def
-%
-% Substitute for Level 2 pattern fill codes with
-% grayscale if Level 2 support is not selected.
-%
-/Level1PatternFill {
-/Pattern1 {0.250 Density} bind def
-/Pattern2 {0.500 Density} bind def
-/Pattern3 {0.750 Density} bind def
-/Pattern4 {0.125 Density} bind def
-/Pattern5 {0.375 Density} bind def
-/Pattern6 {0.625 Density} bind def
-/Pattern7 {0.875 Density} bind def
-} def
-%
-% Now test for support of Level 2 code
-%
-Level1 {Level1PatternFill} {Level2PatternFill} ifelse
-%
-/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
-dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
-currentdict end definefont pop
-%
-% Encoding for ISO-8859-1 (also called Latin1)
-%
-/reencodeISO {
-dup dup findfont dup length dict begin
-{ 1 index /FID ne { def }{ pop pop } ifelse } forall
-currentdict /CharStrings known {
-       CharStrings /Idieresis known {
-               /Encoding ISOLatin1Encoding def } if
-} if
-currentdict end definefont
-} def
-/ISOLatin1Encoding [
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright
-/parenleft/parenright/asterisk/plus/comma/minus/period/slash
-/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon
-/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N
-/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright
-/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m
-/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve
-/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut
-/ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar
-/section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot
-/hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior
-/acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine
-/guillemotright/onequarter/onehalf/threequarters/questiondown
-/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla
-/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex
-/Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis
-/multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute
-/Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis
-/aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave
-/iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex
-/otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis
-/yacute/thorn/ydieresis
-] def
-/MFshow {
-   { dup 5 get 3 ge
-     { 5 get 3 eq {gsave} {grestore} ifelse }
-     {dup dup 0 get findfont exch 1 get scalefont setfont
-     [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6
-     get exch 4 get {Gshow} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq
-     {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5
-     get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div
-     dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get
-     show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop
-     pop aload pop M} ifelse }ifelse }ifelse }
-     ifelse }
-   forall} def
-/Gswidth {dup type /stringtype eq {stringwidth} {pop (n) stringwidth} ifelse} def
-/MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse }
- {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont
-     6 get Gswidth pop add} {pop} ifelse} ifelse} forall} def
-/MLshow { currentpoint stroke M
-  0 exch R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/MRshow { currentpoint stroke M
-  exch dup MFwidth neg 3 -1 roll R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/MCshow { currentpoint stroke M
-  exch dup MFwidth -2 div 3 -1 roll R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/XYsave    { [( ) 1 2 true false 3 ()] } bind def
-/XYrestore { [( ) 1 2 true false 4 ()] } bind def
-/Helvetica reencodeISO def
-Level1 SuppressPDFMark or 
-{} {
-/SDict 10 dict def
-systemdict /pdfmark known not {
-  userdict /pdfmark systemdict /cleartomark get put
-} if
-SDict begin [
-  /Title ()
-  /Subject (gnuplot plot)
-  /Creator (gnuplot 4.6 patchlevel 0)
-  /Author (ali)
-%  /Producer (gnuplot)
-%  /Keywords ()
-  /CreationDate (Mon Feb  2 16:10:03 2015)
-  /DOCINFO pdfmark
-end
-} ifelse
-end
-%%EndProlog
-%%Page: 1 1
-gnudict begin
-gsave
-doclip
-50 50 translate
-0.100 0.100 scale
-0 setgray
-newpath
-(Helvetica) findfont 110 scalefont setfont
-BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {gsave BackgroundColor C clippath fill grestore} if
-1.000 UL
-LTb
-605 352 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 352 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 1250)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 698 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 698 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 1500)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 1044 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 1044 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 1750)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 1391 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 1391 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 2000)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 1737 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 1737 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 2250)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 2083 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 2083 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 2500)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 2429 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 2429 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 2750)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 2776 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 2776 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 3000)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 3122 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 3122 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 3250)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 3468 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 3468 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 3500)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-605 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 75)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1029 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1029 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 100)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1452 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1452 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 125)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1876 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1876 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 150)]
-] -36.7 MCshow
-1.000 UL
-LTb
-2299 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-2299 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 175)]
-] -36.7 MCshow
-1.000 UL
-LTb
-2723 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-2723 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 200)]
-] -36.7 MCshow
-1.000 UL
-LTb
-3147 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-3147 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 225)]
-] -36.7 MCshow
-1.000 UL
-LTb
-3570 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-3570 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 250)]
-] -36.7 MCshow
-1.000 UL
-LTb
-3994 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-3994 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 275)]
-] -36.7 MCshow
-1.000 UL
-LTb
-4417 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-4417 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 300)]
-] -36.7 MCshow
-1.000 UL
-LTb
-4841 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-4841 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 325)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1.000 UL
-LTb
-605 3468 N
-605 352 L
-4236 0 V
-0 3116 V
--4236 0 V
-Z stroke
-LCb setrgbcolor
-88 1910 M
-currentpoint gsave translate -270 rotate 0 0 moveto
-[ [(Helvetica) 110.0 0.0 true true 0 (Energy Consumption Per Period \(Joules\) )]
-] -36.7 MCshow
-grestore
-LTb
-LCb setrgbcolor
-2723 77 M
-[ [(Helvetica) 110.0 0.0 true true 0 (Number of Wireless Sensor Nodes)]
-] -36.7 MCshow
-LTb
-1.000 UP
-1.000 UL
-LTb
-% Begin plot #1
-1.000 UP
-2.000 UL
-LT0
-0.00 0.55 0.55 C LCb setrgbcolor
-1163 3261 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
-] -36.7 MRshow
-LT0
-0.00 0.55 0.55 C 1229 3261 M
-327 0 V
-1029 563 M
-847 202 V
-847 180 V
-847 216 V
-847 268 V
-1029 563 TriUF
-1876 765 TriUF
-2723 945 TriUF
-3570 1161 TriUF
-4417 1429 TriUF
-1392 3261 TriUF
-% End plot #1
-% Begin plot #2
-1.000 UP
-2.000 UL
-LT1
-0.00 0.39 0.00 C LCb setrgbcolor
-1163 3151 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
-] -36.7 MRshow
-LT1
-0.00 0.39 0.00 C 1229 3151 M
-327 0 V
-1029 1285 M
-847 513 V
-847 372 V
-847 465 V
-847 594 V
-1029 1285 DiaF
-1876 1798 DiaF
-2723 2170 DiaF
-3570 2635 DiaF
-4417 3229 DiaF
-1392 3151 DiaF
-% End plot #2
-% Begin plot #3
-1.000 UP
-2.000 UL
-LT2
-0.50 0.00 0.00 C LCb setrgbcolor
-1163 3041 M
-[ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
-] -36.7 MRshow
-LT2
-0.50 0.00 0.00 C 1229 3041 M
-327 0 V
-1029 1408 M
-847 77 V
-847 59 V
-847 169 V
-847 151 V
-1029 1408 Star
-1876 1485 Star
-2723 1544 Star
-3570 1713 Star
-4417 1864 Star
-1392 3041 Star
-% End plot #3
-% Begin plot #4
-1.000 UP
-2.000 UL
-LT3
-0.00 0.00 0.55 C LCb setrgbcolor
-1163 2931 M
-[ [(Helvetica) 110.0 0.0 true true 0 (PeCO)]
-] -36.7 MRshow
-LT3
-0.00 0.00 0.55 C 1229 2931 M
-327 0 V
-1029 449 M
-847 128 V
-847 174 V
-847 233 V
-847 311 V
-1029 449 CircleF
-1876 577 CircleF
-2723 751 CircleF
-3570 984 CircleF
-4417 1295 CircleF
-1392 2931 CircleF
-% End plot #4
-1.000 UL
-LTb
-605 3468 N
-605 352 L
-4236 0 V
-0 3116 V
--4236 0 V
-Z stroke
-1.000 UP
-1.000 UL
-LTb
-stroke
-grestore
-end
-showpage
-%%Trailer
-%%DocumentFonts: Helvetica
-%%Pages: 1
-%%Trailer
-cleartomark
-countdictstack
-exch sub { end } repeat
-restore
-%%EOF
diff --git a/PeCO-EO/figure7b.eps b/PeCO-EO/figure7b.eps
deleted file mode 100644 (file)
index 8953c78..0000000
+++ /dev/null
@@ -1,882 +0,0 @@
-%!PS-Adobe-2.0 EPSF-2.0
-%%BoundingBox: 53 53 545 402
-%%HiResBoundingBox: 54 53.5 544.5 401.5
-%%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Mon Feb  2 16:08:57 2015
-%%EndComments
-% EPSF created by ps2eps 1.68
-%%BeginProlog
-save
-countdictstack
-mark
-newpath
-/showpage {} def
-/setpagedevice {pop} def
-%%EndProlog
-%%Page 1 1
-%%BeginProlog
-/gnudict 256 dict def
-gnudict begin
-%
-% The following true/false flags may be edited by hand if desired.
-% The unit line width and grayscale image gamma correction may also be changed.
-%
-/Color false def
-/Blacktext false def
-/Solid false def
-/Dashlength 1 def
-/Landscape false def
-/Level1 false def
-/Rounded false def
-/ClipToBoundingBox false def
-/SuppressPDFMark false def
-/TransparentPatterns false def
-/gnulinewidth 5.000 def
-/userlinewidth gnulinewidth def
-/Gamma 1.0 def
-/BackgroundColor {-1.000 -1.000 -1.000} def
-%
-/vshift -36 def
-/dl1 {
-  10.0 Dashlength mul mul
-  Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if
-} def
-/dl2 {
-  10.0 Dashlength mul mul
-  Rounded { currentlinewidth 0.75 mul add } if
-} def
-/hpt_ 31.5 def
-/vpt_ 31.5 def
-/hpt hpt_ def
-/vpt vpt_ def
-/doclip {
-  ClipToBoundingBox {
-    newpath 50 50 moveto 554 50 lineto 554 410 lineto 50 410 lineto closepath
-    clip
-  } if
-} def
-%
-% Gnuplot Prolog Version 4.4 (August 2010)
-%
-%/SuppressPDFMark true def
-%
-/M {moveto} bind def
-/L {lineto} bind def
-/R {rmoveto} bind def
-/V {rlineto} bind def
-/N {newpath moveto} bind def
-/Z {closepath} bind def
-/C {setrgbcolor} bind def
-/f {rlineto fill} bind def
-/g {setgray} bind def
-/Gshow {show} def   % May be redefined later in the file to support UTF-8
-/vpt2 vpt 2 mul def
-/hpt2 hpt 2 mul def
-/Lshow {currentpoint stroke M 0 vshift R 
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R 
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
-  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def
-/DL {Color {setrgbcolor Solid {pop []} if 0 setdash}
- {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def
-/BL {stroke userlinewidth 2 mul setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-/AL {stroke userlinewidth 2 div setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-/UL {dup gnulinewidth mul /userlinewidth exch def
-       dup 1 lt {pop 1} if 10 mul /udl exch def} def
-/PL {stroke userlinewidth setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-3.8 setmiterlimit
-% Default Line colors
-/LCw {1 1 1} def
-/LCb {0 0 0} def
-/LCa {0 0 0} def
-/LC0 {1 0 0} def
-/LC1 {0 1 0} def
-/LC2 {0 0 1} def
-/LC3 {1 0 1} def
-/LC4 {0 1 1} def
-/LC5 {1 1 0} def
-/LC6 {0 0 0} def
-/LC7 {1 0.3 0} def
-/LC8 {0.5 0.5 0.5} def
-% Default Line Types
-/LTw {PL [] 1 setgray} def
-/LTb {BL [] LCb DL} def
-/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def
-/LT0 {PL [] LC0 DL} def
-/LT1 {PL [4 dl1 2 dl2] LC1 DL} def
-/LT2 {PL [2 dl1 3 dl2] LC2 DL} def
-/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def
-/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def
-/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def
-/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def
-/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def
-/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def
-/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def
-/Dia {stroke [] 0 setdash 2 copy vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath stroke
-  Pnt} def
-/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V
-  currentpoint stroke M
-  hpt neg vpt neg R hpt2 0 V stroke
- } def
-/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath stroke
-  Pnt} def
-/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M
-  hpt2 vpt2 neg V currentpoint stroke M
-  hpt2 neg 0 R hpt2 vpt2 V stroke} def
-/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath stroke
-  Pnt} def
-/Star {2 copy Pls Crs} def
-/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath fill} def
-/TriUF {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath fill} def
-/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath stroke
-  Pnt} def
-/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath fill} def
-/DiaF {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath fill} def
-/Pent {stroke [] 0 setdash 2 copy gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath stroke grestore Pnt} def
-/PentF {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath fill grestore} def
-/Circle {stroke [] 0 setdash 2 copy
-  hpt 0 360 arc stroke Pnt} def
-/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def
-/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def
-/C1 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C2 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C3 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C4 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 180 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C5 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc
-       2 copy moveto
-       2 copy vpt 180 270 arc closepath fill
-       vpt 0 360 arc} bind def
-/C6 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C7 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C8 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 270 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C9 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 270 450 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
-       2 copy moveto
-       2 copy vpt 90 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C11 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 180 arc closepath fill
-       2 copy moveto
-       2 copy vpt 270 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C12 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 180 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C13 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc closepath fill
-       2 copy moveto
-       2 copy vpt 180 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C14 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 360 arc closepath fill
-       vpt 0 360 arc} bind def
-/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
-       neg 0 rlineto closepath} bind def
-/Square {dup Rec} bind def
-/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def
-/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def
-/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def
-/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
-/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def
-/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
-/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill
-       exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
-/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def
-/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
-       2 copy vpt Square fill Bsquare} bind def
-/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def
-/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def
-/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
-       Bsquare} bind def
-/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
-       Bsquare} bind def
-/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def
-/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
-       2 copy vpt Square fill Bsquare} bind def
-/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
-       2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
-/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def
-/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def
-/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def
-/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def
-/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def
-/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def
-/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def
-/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def
-/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def
-/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def
-/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def
-/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def
-/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def
-/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def
-/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def
-/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def
-/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def
-/DiaE {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath stroke} def
-/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath stroke} def
-/TriUE {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath stroke} def
-/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath stroke} def
-/PentE {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath stroke grestore} def
-/CircE {stroke [] 0 setdash 
-  hpt 0 360 arc stroke} def
-/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def
-/DiaW {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V Opaque stroke} def
-/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V Opaque stroke} def
-/TriUW {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V Opaque stroke} def
-/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V Opaque stroke} def
-/PentW {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  Opaque stroke grestore} def
-/CircW {stroke [] 0 setdash 
-  hpt 0 360 arc Opaque stroke} def
-/BoxFill {gsave Rec 1 setgray fill grestore} def
-/Density {
-  /Fillden exch def
-  currentrgbcolor
-  /ColB exch def /ColG exch def /ColR exch def
-  /ColR ColR Fillden mul Fillden sub 1 add def
-  /ColG ColG Fillden mul Fillden sub 1 add def
-  /ColB ColB Fillden mul Fillden sub 1 add def
-  ColR ColG ColB setrgbcolor} def
-/BoxColFill {gsave Rec PolyFill} def
-/PolyFill {gsave Density fill grestore grestore} def
-/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def
-%
-% PostScript Level 1 Pattern Fill routine for rectangles
-% Usage: x y w h s a XX PatternFill
-%      x,y = lower left corner of box to be filled
-%      w,h = width and height of box
-%        a = angle in degrees between lines and x-axis
-%       XX = 0/1 for no/yes cross-hatch
-%
-/PatternFill {gsave /PFa [ 9 2 roll ] def
-  PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
-  PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
-  gsave 1 setgray fill grestore clip
-  currentlinewidth 0.5 mul setlinewidth
-  /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
-  0 0 M PFa 5 get rotate PFs -2 div dup translate
-  0 1 PFs PFa 4 get div 1 add floor cvi
-       {PFa 4 get mul 0 M 0 PFs V} for
-  0 PFa 6 get ne {
-       0 1 PFs PFa 4 get div 1 add floor cvi
-       {PFa 4 get mul 0 2 1 roll M PFs 0 V} for
- } if
-  stroke grestore} def
-%
-/languagelevel where
- {pop languagelevel} {1} ifelse
- 2 lt
-       {/InterpretLevel1 true def}
-       {/InterpretLevel1 Level1 def}
- ifelse
-%
-% PostScript level 2 pattern fill definitions
-%
-/Level2PatternFill {
-/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8}
-       bind def
-/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} 
->> matrix makepattern
-/Pat1 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke
-       0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke}
->> matrix makepattern
-/Pat2 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L
-       8 8 L 8 0 L 0 0 L fill}
->> matrix makepattern
-/Pat3 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L
-       0 12 M 12 0 L stroke}
->> matrix makepattern
-/Pat4 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L
-       0 -4 M 12 8 L stroke}
->> matrix makepattern
-/Pat5 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L
-       0 12 M 8 -4 L 4 12 M 10 0 L stroke}
->> matrix makepattern
-/Pat6 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L
-       0 -4 M 8 12 L 4 -4 M 10 8 L stroke}
->> matrix makepattern
-/Pat7 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L
-       12 0 M -4 8 L 12 4 M 0 10 L stroke}
->> matrix makepattern
-/Pat8 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L
-       -4 0 M 12 8 L -4 4 M 8 10 L stroke}
->> matrix makepattern
-/Pat9 exch def
-/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def
-/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def
-/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def
-/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def
-/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def
-/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def
-/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def
-} def
-%
-%
-%End of PostScript Level 2 code
-%
-/PatternBgnd {
-  TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse
-} def
-%
-% Substitute for Level 2 pattern fill codes with
-% grayscale if Level 2 support is not selected.
-%
-/Level1PatternFill {
-/Pattern1 {0.250 Density} bind def
-/Pattern2 {0.500 Density} bind def
-/Pattern3 {0.750 Density} bind def
-/Pattern4 {0.125 Density} bind def
-/Pattern5 {0.375 Density} bind def
-/Pattern6 {0.625 Density} bind def
-/Pattern7 {0.875 Density} bind def
-} def
-%
-% Now test for support of Level 2 code
-%
-Level1 {Level1PatternFill} {Level2PatternFill} ifelse
-%
-/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
-dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
-currentdict end definefont pop
-%
-% Encoding for ISO-8859-1 (also called Latin1)
-%
-/reencodeISO {
-dup dup findfont dup length dict begin
-{ 1 index /FID ne { def }{ pop pop } ifelse } forall
-currentdict /CharStrings known {
-       CharStrings /Idieresis known {
-               /Encoding ISOLatin1Encoding def } if
-} if
-currentdict end definefont
-} def
-/ISOLatin1Encoding [
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright
-/parenleft/parenright/asterisk/plus/comma/minus/period/slash
-/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon
-/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N
-/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright
-/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m
-/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve
-/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut
-/ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar
-/section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot
-/hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior
-/acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine
-/guillemotright/onequarter/onehalf/threequarters/questiondown
-/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla
-/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex
-/Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis
-/multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute
-/Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis
-/aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave
-/iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex
-/otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis
-/yacute/thorn/ydieresis
-] def
-/MFshow {
-   { dup 5 get 3 ge
-     { 5 get 3 eq {gsave} {grestore} ifelse }
-     {dup dup 0 get findfont exch 1 get scalefont setfont
-     [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6
-     get exch 4 get {Gshow} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq
-     {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5
-     get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div
-     dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get
-     show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop
-     pop aload pop M} ifelse }ifelse }ifelse }
-     ifelse }
-   forall} def
-/Gswidth {dup type /stringtype eq {stringwidth} {pop (n) stringwidth} ifelse} def
-/MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse }
- {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont
-     6 get Gswidth pop add} {pop} ifelse} ifelse} forall} def
-/MLshow { currentpoint stroke M
-  0 exch R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/MRshow { currentpoint stroke M
-  exch dup MFwidth neg 3 -1 roll R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/MCshow { currentpoint stroke M
-  exch dup MFwidth -2 div 3 -1 roll R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/XYsave    { [( ) 1 2 true false 3 ()] } bind def
-/XYrestore { [( ) 1 2 true false 4 ()] } bind def
-/Helvetica reencodeISO def
-Level1 SuppressPDFMark or 
-{} {
-/SDict 10 dict def
-systemdict /pdfmark known not {
-  userdict /pdfmark systemdict /cleartomark get put
-} if
-SDict begin [
-  /Title ()
-  /Subject (gnuplot plot)
-  /Creator (gnuplot 4.6 patchlevel 0)
-  /Author (ali)
-%  /Producer (gnuplot)
-%  /Keywords ()
-  /CreationDate (Mon Feb  2 16:08:57 2015)
-  /DOCINFO pdfmark
-end
-} ifelse
-end
-%%EndProlog
-%%Page: 1 1
-gnudict begin
-gsave
-doclip
-50 50 translate
-0.100 0.100 scale
-0 setgray
-newpath
-(Helvetica) findfont 110 scalefont setfont
-BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {gsave BackgroundColor C clippath fill grestore} if
-1.000 UL
-LTb
-605 352 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 352 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 1000)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 698 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 698 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 1250)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 1044 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 1044 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 1500)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 1391 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 1391 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 1750)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 1737 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 1737 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 2000)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 2083 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 2083 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 2250)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 2429 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 2429 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 2500)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 2776 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 2776 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 2750)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 3122 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 3122 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 3000)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 3468 M
-63 0 V
-4173 0 R
--63 0 V
-stroke
-539 3468 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 3250)]
-] -36.7 MRshow
-1.000 UL
-LTb
-605 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-605 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 75)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1029 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1029 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 100)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1452 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1452 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 125)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1876 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1876 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 150)]
-] -36.7 MCshow
-1.000 UL
-LTb
-2299 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-2299 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 175)]
-] -36.7 MCshow
-1.000 UL
-LTb
-2723 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-2723 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 200)]
-] -36.7 MCshow
-1.000 UL
-LTb
-3147 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-3147 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 225)]
-] -36.7 MCshow
-1.000 UL
-LTb
-3570 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-3570 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 250)]
-] -36.7 MCshow
-1.000 UL
-LTb
-3994 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-3994 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 275)]
-] -36.7 MCshow
-1.000 UL
-LTb
-4417 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-4417 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 300)]
-] -36.7 MCshow
-1.000 UL
-LTb
-4841 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-4841 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 325)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1.000 UL
-LTb
-605 3468 N
-605 352 L
-4236 0 V
-0 3116 V
--4236 0 V
-Z stroke
-LCb setrgbcolor
-88 1910 M
-currentpoint gsave translate -270 rotate 0 0 moveto
-[ [(Helvetica) 110.0 0.0 true true 0 (Energy Consumption Per Period \(Joules\) )]
-] -36.7 MCshow
-grestore
-LTb
-LCb setrgbcolor
-2723 77 M
-[ [(Helvetica) 110.0 0.0 true true 0 (Number of Wireless Sensor Nodes)]
-] -36.7 MCshow
-LTb
-1.000 UP
-1.000 UL
-LTb
-% Begin plot #1
-1.000 UP
-2.000 UL
-LT0
-0.00 0.55 0.55 C LCb setrgbcolor
-1163 3275 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
-] -36.7 MRshow
-LT0
-0.00 0.55 0.55 C 1229 3275 M
-327 0 V
-1029 603 M
-847 263 V
-847 201 V
-847 210 V
-847 260 V
-1029 603 TriUF
-1876 866 TriUF
-2723 1067 TriUF
-3570 1277 TriUF
-4417 1537 TriUF
-1392 3275 TriUF
-% End plot #1
-% Begin plot #2
-1.000 UP
-2.000 UL
-LT1
-0.00 0.39 0.00 C LCb setrgbcolor
-1163 3165 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
-] -36.7 MRshow
-LT1
-0.00 0.39 0.00 C 1229 3165 M
-327 0 V
-1029 1513 M
-847 293 V
-847 327 V
-847 578 V
-847 522 V
-1029 1513 DiaF
-1876 1806 DiaF
-2723 2133 DiaF
-3570 2711 DiaF
-4417 3233 DiaF
-1392 3165 DiaF
-% End plot #2
-% Begin plot #3
-1.000 UP
-2.000 UL
-LT2
-0.50 0.00 0.00 C LCb setrgbcolor
-1163 3055 M
-[ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
-] -36.7 MRshow
-LT2
-0.50 0.00 0.00 C 1229 3055 M
-327 0 V
-1029 1133 M
-847 122 V
-847 117 V
-847 130 V
-847 141 V
-1029 1133 Star
-1876 1255 Star
-2723 1372 Star
-3570 1502 Star
-4417 1643 Star
-1392 3055 Star
-% End plot #3
-% Begin plot #4
-1.000 UP
-2.000 UL
-LT3
-0.00 0.00 0.55 C LCb setrgbcolor
-1163 2945 M
-[ [(Helvetica) 110.0 0.0 true true 0 (PeCO)]
-] -36.7 MRshow
-LT3
-0.00 0.00 0.55 C 1229 2945 M
-327 0 V
-1029 491 M
-847 76 V
-847 121 V
-847 123 V
-847 215 V
-1029 491 CircleF
-1876 567 CircleF
-2723 688 CircleF
-3570 811 CircleF
-4417 1026 CircleF
-1392 2945 CircleF
-% End plot #4
-1.000 UL
-LTb
-605 3468 N
-605 352 L
-4236 0 V
-0 3116 V
--4236 0 V
-Z stroke
-1.000 UP
-1.000 UL
-LTb
-stroke
-grestore
-end
-showpage
-%%Trailer
-%%DocumentFonts: Helvetica
-%%Pages: 1
-%%Trailer
-cleartomark
-countdictstack
-exch sub { end } repeat
-restore
-%%EOF
index d9217cfaf9330717bd4e0b40a504bbaf2fbcfa66..25a32bc84995f5b86ef1d93077c38d05bd068e00 100644 (file)
@@ -2,7 +2,7 @@
 %%BoundingBox: 53 53 545 402
 %%HiResBoundingBox: 54 53.5 544.5 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
 %%BoundingBox: 53 53 545 402
 %%HiResBoundingBox: 54 53.5 544.5 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Mon Feb  2 16:12:31 2015
+%%CreationDate: Mon Feb  2 16:10:03 2015
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
@@ -513,7 +513,7 @@ SDict begin [
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
-  /CreationDate (Mon Feb  2 16:12:31 2015)
+  /CreationDate (Mon Feb  2 16:10:03 2015)
   /DOCINFO pdfmark
 end
 } ifelse
   /DOCINFO pdfmark
 end
 } ifelse
@@ -531,202 +531,202 @@ newpath
 BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {gsave BackgroundColor C clippath fill grestore} if
 1.000 UL
 LTb
 BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {gsave BackgroundColor C clippath fill grestore} if
 1.000 UL
 LTb
-473 352 M
+605 352 M
 63 0 V
 63 0 V
-4305 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-407 352 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 0)]
+539 352 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 1250)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-473 698 M
+605 698 M
 63 0 V
 63 0 V
-4305 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-407 698 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 10)]
+539 698 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 1500)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-473 1044 M
+605 1044 M
 63 0 V
 63 0 V
-4305 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-407 1044 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 20)]
+539 1044 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 1750)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-473 1391 M
+605 1391 M
 63 0 V
 63 0 V
-4305 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-407 1391 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 30)]
+539 1391 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 2000)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-473 1737 M
+605 1737 M
 63 0 V
 63 0 V
-4305 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-407 1737 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 40)]
+539 1737 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 2250)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-473 2083 M
+605 2083 M
 63 0 V
 63 0 V
-4305 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-407 2083 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 50)]
+539 2083 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 2500)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-473 2429 M
+605 2429 M
 63 0 V
 63 0 V
-4305 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-407 2429 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 60)]
+539 2429 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 2750)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-473 2776 M
+605 2776 M
 63 0 V
 63 0 V
-4305 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-407 2776 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 70)]
+539 2776 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 3000)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-473 3122 M
+605 3122 M
 63 0 V
 63 0 V
-4305 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-407 3122 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 80)]
+539 3122 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 3250)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-473 3468 M
+605 3468 M
 63 0 V
 63 0 V
-4305 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-407 3468 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 90)]
+539 3468 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 3500)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-473 352 M
+605 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-473 242 M
+605 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 75)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 75)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-910 352 M
+1029 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-910 242 M
+1029 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 100)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 100)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-1347 352 M
+1452 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-1347 242 M
+1452 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 125)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 125)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-1783 352 M
+1876 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-1783 242 M
+1876 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 150)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 150)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-2220 352 M
+2299 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-2220 242 M
+2299 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 175)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 175)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-2657 352 M
+2723 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-2657 242 M
+2723 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 200)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 200)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-3094 352 M
+3147 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-3094 242 M
+3147 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 225)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 225)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-3531 352 M
+3570 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-3531 242 M
+3570 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 250)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 250)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-3967 352 M
+3994 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-3967 242 M
+3994 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 275)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 275)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-4404 352 M
+4417 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-4404 242 M
+4417 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 300)]
 ] -36.7 MCshow
 1.000 UL
 [ [(Helvetica) 110.0 0.0 true true 0 ( 300)]
 ] -36.7 MCshow
 1.000 UL
@@ -743,21 +743,21 @@ stroke
 LTb
 1.000 UL
 LTb
 LTb
 1.000 UL
 LTb
-473 3468 N
-473 352 L
-4368 0 V
+605 3468 N
+605 352 L
+4236 0 V
 0 3116 V
 0 3116 V
--4368 0 V
+-4236 0 V
 Z stroke
 LCb setrgbcolor
 88 1910 M
 currentpoint gsave translate -270 rotate 0 0 moveto
 Z stroke
 LCb setrgbcolor
 88 1910 M
 currentpoint gsave translate -270 rotate 0 0 moveto
-[ [(Helvetica) 110.0 0.0 true true 0 (Network Lifetime \(Hours\)  )]
+[ [(Helvetica) 110.0 0.0 true true 0 (Energy Consumption Per Period \(Joules\) )]
 ] -36.7 MCshow
 grestore
 LTb
 LCb setrgbcolor
 ] -36.7 MCshow
 grestore
 LTb
 LCb setrgbcolor
-2657 77 M
+2723 77 M
 [ [(Helvetica) 110.0 0.0 true true 0 (Number of Wireless Sensor Nodes)]
 ] -36.7 MCshow
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 (Number of Wireless Sensor Nodes)]
 ] -36.7 MCshow
 LTb
@@ -769,100 +769,100 @@ LTb
 2.000 UL
 LT0
 0.00 0.55 0.55 C LCb setrgbcolor
 2.000 UL
 LT0
 0.00 0.55 0.55 C LCb setrgbcolor
-1062 3275 M
+1163 3261 M
 [ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
 ] -36.7 MRshow
 LT0
 [ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
 ] -36.7 MRshow
 LT0
-0.00 0.55 0.55 C 1128 3275 M
+0.00 0.55 0.55 C 1229 3261 M
 327 0 V
 327 0 V
-910 1425 M
-873 520 V
-874 484 V
-874 416 V
-873 346 V
-910 1425 TriUF
-1783 1945 TriUF
-2657 2429 TriUF
-3531 2845 TriUF
-4404 3191 TriUF
-1291 3275 TriUF
+1029 563 M
+847 202 V
+847 180 V
+847 216 V
+847 268 V
+1029 563 TriUF
+1876 765 TriUF
+2723 945 TriUF
+3570 1161 TriUF
+4417 1429 TriUF
+1392 3261 TriUF
 % End plot #1
 % Begin plot #2
 1.000 UP
 2.000 UL
 LT1
 0.00 0.39 0.00 C LCb setrgbcolor
 % End plot #1
 % Begin plot #2
 1.000 UP
 2.000 UL
 LT1
 0.00 0.39 0.00 C LCb setrgbcolor
-1062 3165 M
+1163 3151 M
 [ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
 ] -36.7 MRshow
 LT1
 [ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
 ] -36.7 MRshow
 LT1
-0.00 0.39 0.00 C 1128 3165 M
+0.00 0.39 0.00 C 1229 3151 M
 327 0 V
 327 0 V
-910 1356 M
-873 139 V
-874 415 V
-874 277 V
-873 173 V
-910 1356 DiaF
-1783 1495 DiaF
-2657 1910 DiaF
-3531 2187 DiaF
-4404 2360 DiaF
-1291 3165 DiaF
+1029 1285 M
+847 513 V
+847 372 V
+847 465 V
+847 594 V
+1029 1285 DiaF
+1876 1798 DiaF
+2723 2170 DiaF
+3570 2635 DiaF
+4417 3229 DiaF
+1392 3151 DiaF
 % End plot #2
 % Begin plot #3
 1.000 UP
 2.000 UL
 LT2
 0.50 0.00 0.00 C LCb setrgbcolor
 % End plot #2
 % Begin plot #3
 1.000 UP
 2.000 UL
 LT2
 0.50 0.00 0.00 C LCb setrgbcolor
-1062 3055 M
+1163 3041 M
 [ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
 ] -36.7 MRshow
 LT2
 [ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
 ] -36.7 MRshow
 LT2
-0.50 0.00 0.00 C 1128 3055 M
+0.50 0.00 0.00 C 1229 3041 M
 327 0 V
 327 0 V
-910 1010 M
-873 485 V
-874 484 V
-874 277 V
-873 346 V
-910 1010 Star
-1783 1495 Star
-2657 1979 Star
-3531 2256 Star
-4404 2602 Star
-1291 3055 Star
+1029 1408 M
+847 77 V
+847 59 V
+847 169 V
+847 151 V
+1029 1408 Star
+1876 1485 Star
+2723 1544 Star
+3570 1713 Star
+4417 1864 Star
+1392 3041 Star
 % End plot #3
 % Begin plot #4
 1.000 UP
 2.000 UL
 LT3
 0.00 0.00 0.55 C LCb setrgbcolor
 % End plot #3
 % Begin plot #4
 1.000 UP
 2.000 UL
 LT3
 0.00 0.00 0.55 C LCb setrgbcolor
-1062 2945 M
+1163 2931 M
 [ [(Helvetica) 110.0 0.0 true true 0 (PeCO)]
 ] -36.7 MRshow
 LT3
 [ [(Helvetica) 110.0 0.0 true true 0 (PeCO)]
 ] -36.7 MRshow
 LT3
-0.00 0.00 0.55 C 1128 2945 M
+0.00 0.00 0.55 C 1229 2931 M
 327 0 V
 327 0 V
-910 1391 M
-873 519 V
-874 415 V
-874 277 V
-873 312 V
-910 1391 CircleF
-1783 1910 CircleF
-2657 2325 CircleF
-3531 2602 CircleF
-4404 2914 CircleF
-1291 2945 CircleF
+1029 449 M
+847 128 V
+847 174 V
+847 233 V
+847 311 V
+1029 449 CircleF
+1876 577 CircleF
+2723 751 CircleF
+3570 984 CircleF
+4417 1295 CircleF
+1392 2931 CircleF
 % End plot #4
 1.000 UL
 LTb
 % End plot #4
 1.000 UL
 LTb
-473 3468 N
-473 352 L
-4368 0 V
+605 3468 N
+605 352 L
+4236 0 V
 0 3116 V
 0 3116 V
--4368 0 V
+-4236 0 V
 Z stroke
 1.000 UP
 1.000 UL
 Z stroke
 1.000 UP
 1.000 UL
index a6955bed562aa1b9c4ec466bdbed73d8f838be2e..8953c7876f69245feb008b72e055a6a146a2fd22 100644 (file)
@@ -2,7 +2,7 @@
 %%BoundingBox: 53 53 545 402
 %%HiResBoundingBox: 54 53.5 544.5 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
 %%BoundingBox: 53 53 545 402
 %%HiResBoundingBox: 54 53.5 544.5 401.5
 %%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Mon Feb  2 16:11:36 2015
+%%CreationDate: Mon Feb  2 16:08:57 2015
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
 %%EndComments
 % EPSF created by ps2eps 1.68
 %%BeginProlog
@@ -513,7 +513,7 @@ SDict begin [
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
   /Author (ali)
 %  /Producer (gnuplot)
 %  /Keywords ()
-  /CreationDate (Mon Feb  2 16:11:36 2015)
+  /CreationDate (Mon Feb  2 16:08:57 2015)
   /DOCINFO pdfmark
 end
 } ifelse
   /DOCINFO pdfmark
 end
 } ifelse
@@ -531,262 +531,202 @@ newpath
 BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {gsave BackgroundColor C clippath fill grestore} if
 1.000 UL
 LTb
 BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {gsave BackgroundColor C clippath fill grestore} if
 1.000 UL
 LTb
-539 352 M
+605 352 M
 63 0 V
 63 0 V
-4239 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-473 352 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 0)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 560 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 560 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 10)]
+539 352 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 1000)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-539 767 M
+605 698 M
 63 0 V
 63 0 V
-4239 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-473 767 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 20)]
+539 698 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 1250)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-539 975 M
+605 1044 M
 63 0 V
 63 0 V
-4239 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-473 975 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 30)]
+539 1044 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 1500)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-539 1183 M
+605 1391 M
 63 0 V
 63 0 V
-4239 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-473 1183 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 40)]
-] -36.7 MRshow
-1.000 UL
-LTb
 539 1391 M
 539 1391 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 1391 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 50)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 1598 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 1598 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 60)]
+[ [(Helvetica) 110.0 0.0 true true 0 ( 1750)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-539 1806 M
+605 1737 M
 63 0 V
 63 0 V
-4239 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-473 1806 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 70)]
+539 1737 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 2000)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-539 2014 M
+605 2083 M
 63 0 V
 63 0 V
-4239 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-473 2014 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 80)]
+539 2083 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 2250)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-539 2222 M
+605 2429 M
 63 0 V
 63 0 V
-4239 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-473 2222 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 90)]
-] -36.7 MRshow
-1.000 UL
-LTb
 539 2429 M
 539 2429 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 2429 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 100)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 2637 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 2637 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 110)]
+[ [(Helvetica) 110.0 0.0 true true 0 ( 2500)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-539 2845 M
+605 2776 M
 63 0 V
 63 0 V
-4239 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-473 2845 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 120)]
+539 2776 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 2750)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-539 3053 M
+605 3122 M
 63 0 V
 63 0 V
-4239 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-473 3053 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 130)]
+539 3122 M
+[ [(Helvetica) 110.0 0.0 true true 0 ( 3000)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-539 3260 M
+605 3468 M
 63 0 V
 63 0 V
-4239 0 R
+4173 0 R
 -63 0 V
 stroke
 -63 0 V
 stroke
-473 3260 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 140)]
-] -36.7 MRshow
-1.000 UL
-LTb
 539 3468 M
 539 3468 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 3468 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 150)]
+[ [(Helvetica) 110.0 0.0 true true 0 ( 3250)]
 ] -36.7 MRshow
 1.000 UL
 LTb
 ] -36.7 MRshow
 1.000 UL
 LTb
-539 352 M
+605 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-539 242 M
+605 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 75)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 75)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-969 352 M
+1029 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-969 242 M
+1029 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 100)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 100)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-1399 352 M
+1452 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-1399 242 M
+1452 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 125)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 125)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-1830 352 M
+1876 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-1830 242 M
+1876 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 150)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 150)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-2260 352 M
+2299 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-2260 242 M
+2299 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 175)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 175)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-2690 352 M
+2723 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-2690 242 M
+2723 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 200)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 200)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-3120 352 M
+3147 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-3120 242 M
+3147 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 225)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 225)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-3550 352 M
+3570 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-3550 242 M
+3570 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 250)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 250)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-3981 352 M
+3994 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-3981 242 M
+3994 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 275)]
 ] -36.7 MCshow
 1.000 UL
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 ( 275)]
 ] -36.7 MCshow
 1.000 UL
 LTb
-4411 352 M
+4417 352 M
 0 63 V
 0 3053 R
 0 -63 V
 stroke
 0 63 V
 0 3053 R
 0 -63 V
 stroke
-4411 242 M
+4417 242 M
 [ [(Helvetica) 110.0 0.0 true true 0 ( 300)]
 ] -36.7 MCshow
 1.000 UL
 [ [(Helvetica) 110.0 0.0 true true 0 ( 300)]
 ] -36.7 MCshow
 1.000 UL
@@ -803,21 +743,21 @@ stroke
 LTb
 1.000 UL
 LTb
 LTb
 1.000 UL
 LTb
-539 3468 N
-539 352 L
-4302 0 V
+605 3468 N
+605 352 L
+4236 0 V
 0 3116 V
 0 3116 V
--4302 0 V
+-4236 0 V
 Z stroke
 LCb setrgbcolor
 88 1910 M
 currentpoint gsave translate -270 rotate 0 0 moveto
 Z stroke
 LCb setrgbcolor
 88 1910 M
 currentpoint gsave translate -270 rotate 0 0 moveto
-[ [(Helvetica) 110.0 0.0 true true 0 (Network Lifetime \(Hours\)  )]
+[ [(Helvetica) 110.0 0.0 true true 0 (Energy Consumption Per Period \(Joules\) )]
 ] -36.7 MCshow
 grestore
 LTb
 LCb setrgbcolor
 ] -36.7 MCshow
 grestore
 LTb
 LCb setrgbcolor
-2690 77 M
+2723 77 M
 [ [(Helvetica) 110.0 0.0 true true 0 (Number of Wireless Sensor Nodes)]
 ] -36.7 MCshow
 LTb
 [ [(Helvetica) 110.0 0.0 true true 0 (Number of Wireless Sensor Nodes)]
 ] -36.7 MCshow
 LTb
@@ -829,100 +769,100 @@ LTb
 2.000 UL
 LT0
 0.00 0.55 0.55 C LCb setrgbcolor
 2.000 UL
 LT0
 0.00 0.55 0.55 C LCb setrgbcolor
-1112 3288 M
+1163 3275 M
 [ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
 ] -36.7 MRshow
 LT0
 [ [(Helvetica) 110.0 0.0 true true 0 (DiLCO)]
 ] -36.7 MRshow
 LT0
-0.00 0.55 0.55 C 1178 3288 M
+0.00 0.55 0.55 C 1229 3275 M
 327 0 V
 327 0 V
-969 1349 M
-861 312 V
-860 311 V
-860 270 V
-861 208 V
-969 1349 TriUF
-1830 1661 TriUF
-2690 1972 TriUF
-3550 2242 TriUF
-4411 2450 TriUF
-1341 3288 TriUF
+1029 603 M
+847 263 V
+847 201 V
+847 210 V
+847 260 V
+1029 603 TriUF
+1876 866 TriUF
+2723 1067 TriUF
+3570 1277 TriUF
+4417 1537 TriUF
+1392 3275 TriUF
 % End plot #1
 % Begin plot #2
 1.000 UP
 2.000 UL
 LT1
 0.00 0.39 0.00 C LCb setrgbcolor
 % End plot #1
 % Begin plot #2
 1.000 UP
 2.000 UL
 LT1
 0.00 0.39 0.00 C LCb setrgbcolor
-1112 3178 M
+1163 3165 M
 [ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
 ] -36.7 MRshow
 LT1
 [ [(Helvetica) 110.0 0.0 true true 0 (DESK)]
 ] -36.7 MRshow
 LT1
-0.00 0.39 0.00 C 1178 3178 M
+0.00 0.39 0.00 C 1229 3165 M
 327 0 V
 327 0 V
-969 1017 M
-861 249 V
-860 229 V
-860 103 V
-861 125 V
-969 1017 DiaF
-1830 1266 DiaF
-2690 1495 DiaF
-3550 1598 DiaF
-4411 1723 DiaF
-1341 3178 DiaF
+1029 1513 M
+847 293 V
+847 327 V
+847 578 V
+847 522 V
+1029 1513 DiaF
+1876 1806 DiaF
+2723 2133 DiaF
+3570 2711 DiaF
+4417 3233 DiaF
+1392 3165 DiaF
 % End plot #2
 % Begin plot #3
 1.000 UP
 2.000 UL
 LT2
 0.50 0.00 0.00 C LCb setrgbcolor
 % End plot #2
 % Begin plot #3
 1.000 UP
 2.000 UL
 LT2
 0.50 0.00 0.00 C LCb setrgbcolor
-1112 3068 M
+1163 3055 M
 [ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
 ] -36.7 MRshow
 LT2
 [ [(Helvetica) 110.0 0.0 true true 0 (GAF)]
 ] -36.7 MRshow
 LT2
-0.50 0.00 0.00 C 1178 3068 M
+0.50 0.00 0.00 C 1229 3055 M
 327 0 V
 327 0 V
-969 1079 M
-861 332 V
-860 312 V
-860 270 V
-861 249 V
-969 1079 Star
-1830 1411 Star
-2690 1723 Star
-3550 1993 Star
-4411 2242 Star
-1341 3068 Star
+1029 1133 M
+847 122 V
+847 117 V
+847 130 V
+847 141 V
+1029 1133 Star
+1876 1255 Star
+2723 1372 Star
+3570 1502 Star
+4417 1643 Star
+1392 3055 Star
 % End plot #3
 % Begin plot #4
 1.000 UP
 2.000 UL
 LT3
 0.00 0.00 0.55 C LCb setrgbcolor
 % End plot #3
 % Begin plot #4
 1.000 UP
 2.000 UL
 LT3
 0.00 0.00 0.55 C LCb setrgbcolor
-1112 2958 M
+1163 2945 M
 [ [(Helvetica) 110.0 0.0 true true 0 (PeCO)]
 ] -36.7 MRshow
 LT3
 [ [(Helvetica) 110.0 0.0 true true 0 (PeCO)]
 ] -36.7 MRshow
 LT3
-0.00 0.00 0.55 C 1178 2958 M
+0.00 0.00 0.55 C 1229 2945 M
 327 0 V
 327 0 V
-969 1391 M
-861 498 V
-860 416 V
-860 394 V
-861 250 V
-969 1391 CircleF
-1830 1889 CircleF
-2690 2305 CircleF
-3550 2699 CircleF
-4411 2949 CircleF
-1341 2958 CircleF
+1029 491 M
+847 76 V
+847 121 V
+847 123 V
+847 215 V
+1029 491 CircleF
+1876 567 CircleF
+2723 688 CircleF
+3570 811 CircleF
+4417 1026 CircleF
+1392 2945 CircleF
 % End plot #4
 1.000 UL
 LTb
 % End plot #4
 1.000 UL
 LTb
-539 3468 N
-539 352 L
-4302 0 V
+605 3468 N
+605 352 L
+4236 0 V
 0 3116 V
 0 3116 V
--4302 0 V
+-4236 0 V
 Z stroke
 1.000 UP
 1.000 UL
 Z stroke
 1.000 UP
 1.000 UL
diff --git a/PeCO-EO/figure9.eps b/PeCO-EO/figure9.eps
deleted file mode 100644 (file)
index b28c70d..0000000
+++ /dev/null
@@ -1,1000 +0,0 @@
-%!PS-Adobe-2.0 EPSF-2.0
-%%BoundingBox: 53 53 536 402
-%%HiResBoundingBox: 54 53.5 535 401.5
-%%Creator: gnuplot 4.6 patchlevel 0
-%%CreationDate: Wed Sep 23 10:23:23 2015
-%%EndComments
-% EPSF created by ps2eps 1.68
-%%BeginProlog
-save
-countdictstack
-mark
-newpath
-/showpage {} def
-/setpagedevice {pop} def
-%%EndProlog
-%%Page 1 1
-%%BeginProlog
-/gnudict 256 dict def
-gnudict begin
-%
-% The following true/false flags may be edited by hand if desired.
-% The unit line width and grayscale image gamma correction may also be changed.
-%
-/Color false def
-/Blacktext false def
-/Solid false def
-/Dashlength 1 def
-/Landscape false def
-/Level1 false def
-/Rounded false def
-/ClipToBoundingBox false def
-/SuppressPDFMark false def
-/TransparentPatterns false def
-/gnulinewidth 5.000 def
-/userlinewidth gnulinewidth def
-/Gamma 1.0 def
-/BackgroundColor {-1.000 -1.000 -1.000} def
-%
-/vshift -36 def
-/dl1 {
-  10.0 Dashlength mul mul
-  Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if
-} def
-/dl2 {
-  10.0 Dashlength mul mul
-  Rounded { currentlinewidth 0.75 mul add } if
-} def
-/hpt_ 31.5 def
-/vpt_ 31.5 def
-/hpt hpt_ def
-/vpt vpt_ def
-/doclip {
-  ClipToBoundingBox {
-    newpath 50 50 moveto 554 50 lineto 554 410 lineto 50 410 lineto closepath
-    clip
-  } if
-} def
-%
-% Gnuplot Prolog Version 4.4 (August 2010)
-%
-%/SuppressPDFMark true def
-%
-/M {moveto} bind def
-/L {lineto} bind def
-/R {rmoveto} bind def
-/V {rlineto} bind def
-/N {newpath moveto} bind def
-/Z {closepath} bind def
-/C {setrgbcolor} bind def
-/f {rlineto fill} bind def
-/g {setgray} bind def
-/Gshow {show} def   % May be redefined later in the file to support UTF-8
-/vpt2 vpt 2 mul def
-/hpt2 hpt 2 mul def
-/Lshow {currentpoint stroke M 0 vshift R 
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/Rshow {currentpoint stroke M dup stringwidth pop neg vshift R
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R 
-       Blacktext {gsave 0 setgray show grestore} {show} ifelse} def
-/UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
-  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def
-/DL {Color {setrgbcolor Solid {pop []} if 0 setdash}
- {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def
-/BL {stroke userlinewidth 2 mul setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-/AL {stroke userlinewidth 2 div setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-/UL {dup gnulinewidth mul /userlinewidth exch def
-       dup 1 lt {pop 1} if 10 mul /udl exch def} def
-/PL {stroke userlinewidth setlinewidth
-       Rounded {1 setlinejoin 1 setlinecap} if} def
-3.8 setmiterlimit
-% Default Line colors
-/LCw {1 1 1} def
-/LCb {0 0 0} def
-/LCa {0 0 0} def
-/LC0 {1 0 0} def
-/LC1 {0 1 0} def
-/LC2 {0 0 1} def
-/LC3 {1 0 1} def
-/LC4 {0 1 1} def
-/LC5 {1 1 0} def
-/LC6 {0 0 0} def
-/LC7 {1 0.3 0} def
-/LC8 {0.5 0.5 0.5} def
-% Default Line Types
-/LTw {PL [] 1 setgray} def
-/LTb {BL [] LCb DL} def
-/LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def
-/LT0 {PL [] LC0 DL} def
-/LT1 {PL [4 dl1 2 dl2] LC1 DL} def
-/LT2 {PL [2 dl1 3 dl2] LC2 DL} def
-/LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def
-/LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def
-/LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def
-/LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def
-/LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def
-/LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def
-/Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def
-/Dia {stroke [] 0 setdash 2 copy vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath stroke
-  Pnt} def
-/Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V
-  currentpoint stroke M
-  hpt neg vpt neg R hpt2 0 V stroke
- } def
-/Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath stroke
-  Pnt} def
-/Crs {stroke [] 0 setdash exch hpt sub exch vpt add M
-  hpt2 vpt2 neg V currentpoint stroke M
-  hpt2 neg 0 R hpt2 vpt2 V stroke} def
-/TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath stroke
-  Pnt} def
-/Star {2 copy Pls Crs} def
-/BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath fill} def
-/TriUF {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath fill} def
-/TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath stroke
-  Pnt} def
-/TriDF {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath fill} def
-/DiaF {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath fill} def
-/Pent {stroke [] 0 setdash 2 copy gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath stroke grestore Pnt} def
-/PentF {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath fill grestore} def
-/Circle {stroke [] 0 setdash 2 copy
-  hpt 0 360 arc stroke Pnt} def
-/CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def
-/C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def
-/C1 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C2 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C3 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C4 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 180 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C5 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc
-       2 copy moveto
-       2 copy vpt 180 270 arc closepath fill
-       vpt 0 360 arc} bind def
-/C6 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C7 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 270 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C8 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 270 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C9 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 270 450 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
-       2 copy moveto
-       2 copy vpt 90 180 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C11 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 180 arc closepath fill
-       2 copy moveto
-       2 copy vpt 270 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C12 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 180 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C13 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 0 90 arc closepath fill
-       2 copy moveto
-       2 copy vpt 180 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/C14 {BL [] 0 setdash 2 copy moveto
-       2 copy vpt 90 360 arc closepath fill
-       vpt 0 360 arc} bind def
-/C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
-       vpt 0 360 arc closepath} bind def
-/Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
-       neg 0 rlineto closepath} bind def
-/Square {dup Rec} bind def
-/Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def
-/S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def
-/S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def
-/S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
-/S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def
-/S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
-/S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill
-       exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def
-/S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def
-/S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
-       2 copy vpt Square fill Bsquare} bind def
-/S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def
-/S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def
-/S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
-       Bsquare} bind def
-/S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
-       Bsquare} bind def
-/S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def
-/S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
-       2 copy vpt Square fill Bsquare} bind def
-/S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
-       2 copy exch vpt sub exch vpt Square fill Bsquare} bind def
-/S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def
-/D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def
-/D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def
-/D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def
-/D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def
-/D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def
-/D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def
-/D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def
-/D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def
-/D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def
-/D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def
-/D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def
-/D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def
-/D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def
-/D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def
-/D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def
-/D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def
-/DiaE {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V closepath stroke} def
-/BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V closepath stroke} def
-/TriUE {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V closepath stroke} def
-/TriDE {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V closepath stroke} def
-/PentE {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  closepath stroke grestore} def
-/CircE {stroke [] 0 setdash 
-  hpt 0 360 arc stroke} def
-/Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def
-/DiaW {stroke [] 0 setdash vpt add M
-  hpt neg vpt neg V hpt vpt neg V
-  hpt vpt V hpt neg vpt V Opaque stroke} def
-/BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M
-  0 vpt2 neg V hpt2 0 V 0 vpt2 V
-  hpt2 neg 0 V Opaque stroke} def
-/TriUW {stroke [] 0 setdash vpt 1.12 mul add M
-  hpt neg vpt -1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt 1.62 mul V Opaque stroke} def
-/TriDW {stroke [] 0 setdash vpt 1.12 mul sub M
-  hpt neg vpt 1.62 mul V
-  hpt 2 mul 0 V
-  hpt neg vpt -1.62 mul V Opaque stroke} def
-/PentW {stroke [] 0 setdash gsave
-  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
-  Opaque stroke grestore} def
-/CircW {stroke [] 0 setdash 
-  hpt 0 360 arc Opaque stroke} def
-/BoxFill {gsave Rec 1 setgray fill grestore} def
-/Density {
-  /Fillden exch def
-  currentrgbcolor
-  /ColB exch def /ColG exch def /ColR exch def
-  /ColR ColR Fillden mul Fillden sub 1 add def
-  /ColG ColG Fillden mul Fillden sub 1 add def
-  /ColB ColB Fillden mul Fillden sub 1 add def
-  ColR ColG ColB setrgbcolor} def
-/BoxColFill {gsave Rec PolyFill} def
-/PolyFill {gsave Density fill grestore grestore} def
-/h {rlineto rlineto rlineto gsave closepath fill grestore} bind def
-%
-% PostScript Level 1 Pattern Fill routine for rectangles
-% Usage: x y w h s a XX PatternFill
-%      x,y = lower left corner of box to be filled
-%      w,h = width and height of box
-%        a = angle in degrees between lines and x-axis
-%       XX = 0/1 for no/yes cross-hatch
-%
-/PatternFill {gsave /PFa [ 9 2 roll ] def
-  PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate
-  PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec
-  gsave 1 setgray fill grestore clip
-  currentlinewidth 0.5 mul setlinewidth
-  /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def
-  0 0 M PFa 5 get rotate PFs -2 div dup translate
-  0 1 PFs PFa 4 get div 1 add floor cvi
-       {PFa 4 get mul 0 M 0 PFs V} for
-  0 PFa 6 get ne {
-       0 1 PFs PFa 4 get div 1 add floor cvi
-       {PFa 4 get mul 0 2 1 roll M PFs 0 V} for
- } if
-  stroke grestore} def
-%
-/languagelevel where
- {pop languagelevel} {1} ifelse
- 2 lt
-       {/InterpretLevel1 true def}
-       {/InterpretLevel1 Level1 def}
- ifelse
-%
-% PostScript level 2 pattern fill definitions
-%
-/Level2PatternFill {
-/Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8}
-       bind def
-/KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} 
->> matrix makepattern
-/Pat1 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke
-       0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke}
->> matrix makepattern
-/Pat2 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L
-       8 8 L 8 0 L 0 0 L fill}
->> matrix makepattern
-/Pat3 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L
-       0 12 M 12 0 L stroke}
->> matrix makepattern
-/Pat4 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L
-       0 -4 M 12 8 L stroke}
->> matrix makepattern
-/Pat5 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L
-       0 12 M 8 -4 L 4 12 M 10 0 L stroke}
->> matrix makepattern
-/Pat6 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L
-       0 -4 M 8 12 L 4 -4 M 10 8 L stroke}
->> matrix makepattern
-/Pat7 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L
-       12 0 M -4 8 L 12 4 M 0 10 L stroke}
->> matrix makepattern
-/Pat8 exch def
-<< Tile8x8
- /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L
-       -4 0 M 12 8 L -4 4 M 8 10 L stroke}
->> matrix makepattern
-/Pat9 exch def
-/Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def
-/Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def
-/Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def
-/Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def
-/Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def
-/Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def
-/Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def
-} def
-%
-%
-%End of PostScript Level 2 code
-%
-/PatternBgnd {
-  TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse
-} def
-%
-% Substitute for Level 2 pattern fill codes with
-% grayscale if Level 2 support is not selected.
-%
-/Level1PatternFill {
-/Pattern1 {0.250 Density} bind def
-/Pattern2 {0.500 Density} bind def
-/Pattern3 {0.750 Density} bind def
-/Pattern4 {0.125 Density} bind def
-/Pattern5 {0.375 Density} bind def
-/Pattern6 {0.625 Density} bind def
-/Pattern7 {0.875 Density} bind def
-} def
-%
-% Now test for support of Level 2 code
-%
-Level1 {Level1PatternFill} {Level2PatternFill} ifelse
-%
-/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont
-dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall
-currentdict end definefont pop
-%
-% Encoding for ISO-8859-1 (also called Latin1)
-%
-/reencodeISO {
-dup dup findfont dup length dict begin
-{ 1 index /FID ne { def }{ pop pop } ifelse } forall
-currentdict /CharStrings known {
-       CharStrings /Idieresis known {
-               /Encoding ISOLatin1Encoding def } if
-} if
-currentdict end definefont
-} def
-/ISOLatin1Encoding [
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright
-/parenleft/parenright/asterisk/plus/comma/minus/period/slash
-/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon
-/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N
-/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright
-/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m
-/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve
-/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut
-/ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar
-/section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot
-/hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior
-/acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine
-/guillemotright/onequarter/onehalf/threequarters/questiondown
-/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla
-/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex
-/Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis
-/multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute
-/Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis
-/aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave
-/iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex
-/otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis
-/yacute/thorn/ydieresis
-] def
-/MFshow {
-   { dup 5 get 3 ge
-     { 5 get 3 eq {gsave} {grestore} ifelse }
-     {dup dup 0 get findfont exch 1 get scalefont setfont
-     [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6
-     get exch 4 get {Gshow} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq
-     {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5
-     get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div
-     dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get
-     show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop
-     pop aload pop M} ifelse }ifelse }ifelse }
-     ifelse }
-   forall} def
-/Gswidth {dup type /stringtype eq {stringwidth} {pop (n) stringwidth} ifelse} def
-/MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse }
- {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont
-     6 get Gswidth pop add} {pop} ifelse} ifelse} forall} def
-/MLshow { currentpoint stroke M
-  0 exch R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/MRshow { currentpoint stroke M
-  exch dup MFwidth neg 3 -1 roll R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/MCshow { currentpoint stroke M
-  exch dup MFwidth -2 div 3 -1 roll R
-  Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def
-/XYsave    { [( ) 1 2 true false 3 ()] } bind def
-/XYrestore { [( ) 1 2 true false 4 ()] } bind def
-/Helvetica reencodeISO def
-Level1 SuppressPDFMark or 
-{} {
-/SDict 10 dict def
-systemdict /pdfmark known not {
-  userdict /pdfmark systemdict /cleartomark get put
-} if
-SDict begin [
-  /Title ()
-  /Subject (gnuplot plot)
-  /Creator (gnuplot 4.6 patchlevel 0)
-  /Author (ali)
-%  /Producer (gnuplot)
-%  /Keywords ()
-  /CreationDate (Wed Sep 23 10:23:23 2015)
-  /DOCINFO pdfmark
-end
-} ifelse
-end
-%%EndProlog
-%%Page: 1 1
-gnudict begin
-gsave
-doclip
-50 50 translate
-0.100 0.100 scale
-0 setgray
-newpath
-(Helvetica) findfont 110 scalefont setfont
-BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {gsave BackgroundColor C clippath fill grestore} if
-1.000 UL
-LTb
-539 352 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 352 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 0)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 456 M
-31 0 V
-4271 0 R
--31 0 V
-539 560 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 560 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 10)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 664 M
-31 0 V
-4271 0 R
--31 0 V
-539 767 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 767 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 20)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 871 M
-31 0 V
-4271 0 R
--31 0 V
-539 975 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 975 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 30)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 1079 M
-31 0 V
-4271 0 R
--31 0 V
-539 1183 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 1183 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 40)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 1287 M
-31 0 V
-4271 0 R
--31 0 V
-539 1391 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 1391 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 50)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 1495 M
-31 0 V
-4271 0 R
--31 0 V
-539 1598 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 1598 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 60)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 1702 M
-31 0 V
-4271 0 R
--31 0 V
-539 1806 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 1806 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 70)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 1910 M
-31 0 V
-4271 0 R
--31 0 V
-539 2014 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 2014 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 80)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 2118 M
-31 0 V
-4271 0 R
--31 0 V
-539 2222 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 2222 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 90)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 2325 M
-31 0 V
-4271 0 R
--31 0 V
-539 2429 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 2429 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 100)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 2533 M
-31 0 V
-4271 0 R
--31 0 V
-539 2637 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 2637 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 110)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 2741 M
-31 0 V
-4271 0 R
--31 0 V
-539 2845 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 2845 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 120)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 2949 M
-31 0 V
-4271 0 R
--31 0 V
-539 3053 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 3053 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 130)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 3156 M
-31 0 V
-4271 0 R
--31 0 V
-539 3260 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 3260 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 140)]
-] -36.7 MRshow
-1.000 UL
-LTb
-539 3364 M
-31 0 V
-4271 0 R
--31 0 V
-539 3468 M
-63 0 V
-4239 0 R
--63 0 V
-stroke
-473 3468 M
-[ [(Helvetica) 110.0 0.0 true true 0 ( 150)]
-] -36.7 MRshow
-1.000 UL
-LTb
-1256 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1256 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 (100)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1973 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-1973 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 (150)]
-] -36.7 MCshow
-1.000 UL
-LTb
-2690 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-2690 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 (200)]
-] -36.7 MCshow
-1.000 UL
-LTb
-3407 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-3407 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 (250)]
-] -36.7 MCshow
-1.000 UL
-LTb
-4124 352 M
-0 63 V
-0 3053 R
-0 -63 V
-stroke
-4124 242 M
-[ [(Helvetica) 110.0 0.0 true true 0 (300)]
-] -36.7 MCshow
-1.000 UL
-LTb
-1.000 UL
-LTb
-539 3468 N
-539 352 L
-4302 0 V
-0 3116 V
--4302 0 V
-Z stroke
-LCb setrgbcolor
-88 1910 M
-currentpoint gsave translate -270 rotate 0 0 moveto
-[ [(Helvetica) 110.0 0.0 true true 0 (Network Lifetime \(Hours\) )]
-] -36.7 MCshow
-grestore
-LTb
-LCb setrgbcolor
-2690 77 M
-[ [(Helvetica) 110.0 0.0 true true 0 (The Number of Wireless Sensor Nodes)]
-] -36.7 MCshow
-LTb
-1.000 UP
-1.000 UL
-LTb
-% Begin plot #1
-1.000 UL
-LT0
-0.62 0.69 0.87 C LCb setrgbcolor
-1156 3330 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO/70)]
-] -36.7 MRshow
-LT0
-0.62 0.69 0.87 C 1.000 1222 3303 327 55 BoxColFill
-1.000 938 352 50 915 BoxColFill
-1.000 1655 352 50 1227 BoxColFill
-1.000 2372 352 50 1538 BoxColFill
-1.000 3089 352 50 1788 BoxColFill
-1.000 3806 352 50 1974 BoxColFill
-% End plot #1
-% Begin plot #2
-1.000 UL
-LT1
-0.10 0.10 0.44 C LCb setrgbcolor
-1156 3220 M
-[ [(Helvetica) 110.0 0.0 true true 0 (PeCO/70)]
-] -36.7 MRshow
-LT1
-0.10 0.10 0.44 C 1.000 1222 3193 327 55 BoxColFill
-1.000 1003 352 50 977 BoxColFill
-1.000 1720 352 50 1330 BoxColFill
-1.000 2437 352 50 1704 BoxColFill
-1.000 3154 352 50 2099 BoxColFill
-1.000 3871 352 50 2369 BoxColFill
-% End plot #2
-% Begin plot #3
-1.000 UL
-LT2
-1.00 0.75 0.80 C LCb setrgbcolor
-1156 3110 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO/80)]
-] -36.7 MRshow
-LT2
-1.00 0.75 0.80 C 1.000 1222 3083 327 55 BoxColFill
-1.000 1069 352 49 728 BoxColFill
-1.000 1786 352 49 1081 BoxColFill
-1.000 2503 352 49 1414 BoxColFill
-1.000 3220 352 49 1704 BoxColFill
-1.000 3937 352 49 1912 BoxColFill
-% End plot #3
-% Begin plot #4
-1.000 UL
-LT3
-1.00 0.00 0.00 C LCb setrgbcolor
-1156 3000 M
-[ [(Helvetica) 110.0 0.0 true true 0 (PeCO/80)]
-] -36.7 MRshow
-LT3
-1.00 0.00 0.00 C 1.000 1222 2973 327 55 BoxColFill
-1.000 1134 352 50 749 BoxColFill
-1.000 1851 352 50 1268 BoxColFill
-1.000 2568 352 50 1580 BoxColFill
-1.000 3285 352 50 1912 BoxColFill
-1.000 4002 352 50 2182 BoxColFill
-% End plot #4
-% Begin plot #5
-1.000 UL
-LT4
-0.54 0.17 0.89 C LCb setrgbcolor
-1156 2890 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO/85)]
-] -36.7 MRshow
-LT4
-0.54 0.17 0.89 C 1.000 1222 2863 327 55 BoxColFill
-1.000 1199 352 50 707 BoxColFill
-1.000 1916 352 50 1040 BoxColFill
-1.000 2633 352 50 1351 BoxColFill
-1.000 3350 352 50 1642 BoxColFill
-1.000 4067 352 50 1871 BoxColFill
-% End plot #5
-% Begin plot #6
-1.000 UL
-LT5
-0.18 0.55 0.34 C LCb setrgbcolor
-1156 2780 M
-[ [(Helvetica) 110.0 0.0 true true 0 (PeCO/85)]
-] -36.7 MRshow
-LT5
-0.18 0.55 0.34 C 1.000 1222 2753 327 55 BoxColFill
-1.000 1264 352 50 707 BoxColFill
-1.000 1981 352 50 1081 BoxColFill
-1.000 2698 352 50 1455 BoxColFill
-1.000 3415 352 50 1788 BoxColFill
-1.000 4132 352 50 1954 BoxColFill
-% End plot #6
-% Begin plot #7
-1.000 UL
-LT6
-1.00 0.00 1.00 C LCb setrgbcolor
-1156 2670 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO/90)]
-] -36.7 MRshow
-LT6
-1.00 0.00 1.00 C 1.000 1222 2643 327 55 BoxColFill
-1.000 1329 352 50 687 BoxColFill
-1.000 2046 352 50 998 BoxColFill
-1.000 2763 352 50 1310 BoxColFill
-1.000 3480 352 50 1580 BoxColFill
-1.000 4197 352 50 1808 BoxColFill
-% End plot #7
-% Begin plot #8
-1.000 UL
-LT7
-0.00 0.55 0.55 C LCb setrgbcolor
-1156 2560 M
-[ [(Helvetica) 110.0 0.0 true true 0 (PeCO/90)]
-] -36.7 MRshow
-LT7
-0.00 0.55 0.55 C 1.000 1222 2533 327 55 BoxColFill
-1.000 1395 352 49 687 BoxColFill
-1.000 2112 352 49 1019 BoxColFill
-1.000 2829 352 49 1330 BoxColFill
-1.000 3546 352 49 1621 BoxColFill
-1.000 4263 352 49 1788 BoxColFill
-% End plot #8
-% Begin plot #9
-1.000 UL
-LT8
-0.50 1.00 0.83 C LCb setrgbcolor
-1156 2450 M
-[ [(Helvetica) 110.0 0.0 true true 0 (DiLCO/95)]
-] -36.7 MRshow
-LT8
-0.50 1.00 0.83 C 1.000 1222 2423 327 55 BoxColFill
-1.000 1460 352 50 645 BoxColFill
-1.000 2177 352 50 957 BoxColFill
-1.000 2894 352 50 1247 BoxColFill
-1.000 3611 352 50 1497 BoxColFill
-1.000 4328 352 50 1704 BoxColFill
-% End plot #9
-% Begin plot #10
-1.000 UL
-LT0
-0.50 0.00 0.00 C LCb setrgbcolor
-1156 2340 M
-[ [(Helvetica) 110.0 0.0 true true 0 (PeCO/95)]
-] -36.7 MRshow
-LT0
-0.50 0.00 0.00 C 1.000 1222 2313 327 55 BoxColFill
-1.000 1525 352 50 624 BoxColFill
-1.000 2242 352 50 936 BoxColFill
-1.000 2959 352 50 1185 BoxColFill
-1.000 3676 352 50 1351 BoxColFill
-1.000 4393 352 50 1538 BoxColFill
-% End plot #10
-1.000 UL
-LTb
-539 3468 N
-539 352 L
-4302 0 V
-0 3116 V
--4302 0 V
-Z stroke
-1.000 UP
-1.000 UL
-LTb
-stroke
-grestore
-end
-showpage
-%%Trailer
-%%DocumentFonts: Helvetica
-%%Pages: 1
-%%Trailer
-cleartomark
-countdictstack
-exch sub { end } repeat
-restore
-%%EOF