+A large variety of coverage scheduling algorithms have been proposed in the literature. Many of the existing algorithms, dealing with the maximisation of the number of cover sets, are heuristics. These heuristics involve the construction of a cover set by including in priority the sensor nodes which cover critical targets, that is to say targets that are covered by the smallest number of sensors. Other approaches are based on mathematical programming formulations and dedicated techniques (solving with a branch-and-bound algorithms available in optimization solver). The problem is formulated as an optimization problem (maximization of the lifetime, of the number of cover sets) under target coverage and energy constraints. Column generation techniques, well-known and widely practiced techniques for solving linear programs with too many variables, have been also used~\cite{castano2013column,rossi2012exact,deschinkel2012column}.
+
+Diongue and Thiare~\cite{diongue2013alarm} proposed an energy aware sleep scheduling algorithm for lifetime maximization in wireless sensor networks (ALARM). The proposed approach permits to schedule redundant nodes according to the weibull distribution. This work did not analyze the ALARM scheme under the coverage problem.
+
+Shi et al.~\cite{shi2009} modeled the Area Coverage Problem (ACP), which will be changed into a set coverage
+problem. By using this model, they are proposed an Energy-Efficient central-Scheduling greedy algorithm, which can reduces energy consumption and increases network lifetime, by selecting a appropriate subset of sensor nodes to support the networks periodically.
+
+In ~\cite{chenait2013distributed}, the authors presented a coverage-guaranteed distributed sleep/wake scheduling scheme so as to prolong network lifetime while guaranteeing network coverage. This scheme mitigates scheduling process to be more stable by avoiding useless transitions between states without affecting the coverage level required by the application.
+
+The work in~\cite{cheng2014achieving} presented a unified sensing architecture for duty cycled sensor networks, called uSense, which comprises three ideas: Asymmetric Architecture, Generic Switching and Global Scheduling. The objective is to provide a flexible and efficient coverage in sensor networks.
+
+In~\cite{ling2009energy}, the lifetime of
+a sensor node is divided into epochs. At each epoch, the
+base station deduces the current sensing coverage requirement
+from application or user request. It then applies the heuristic algorithm in order to produce the set of active nodes which take the mission of sensing during the current epoch. After that, the produced schedule is sent to the sensor nodes in the network.
+