+In this subsection, we first focus on the performance of our DiLCO protocol for
+different numbers of subregions. We consider partitions of the WSN area into
+$2$, $4$, $8$, $16$, and $32$ subregions. Thus the DiLCO protocol is declined in
+five versions: DiLCO-2, DiLCO-4, DiLCO-8, DiLCO-16, and DiLCO-32. Simulations
+without partitioning the area of interest, case which corresponds to a
+centralized approach, are not presented because they require high execution
+times to solve the integer program and therefore consume too much energy.
+
+We compare our protocol to two other approaches. The first one, called DESK and
+proposed by ~\cite{ChinhVu} is a fully distributed coverage algorithm. The
+second one, called GAF ~\cite{xu2001geography}, consists in dividing the region
+into fixed squares. During the decision phase, in each square, one sensor is
+chosen to remain active during the sensing phase.
+
+\subsubsection{Coverage ratio}
+
+Figure~\ref{fig3} shows the average coverage ratio for 150 deployed nodes. It
+can be seen that both DESK and GAF provide a little better coverage ratio
+compared to DiLCO in the first thirty periods. This can be easily explained by
+the number of active nodes: the optimization process of our protocol activates
+less nodes than DESK or GAF, resulting in a slight decrease of the coverage
+ratio. In case of DiLCO-2 (respectively DiLCO-4), the coverage ratio exhibits a
+fast decrease with the number of periods and reaches zero value in period {\bf
+ X} (respectively {\bf Y}), whereas the other versions of DiLCO, DESK, and GAF
+ensure a coverage ratio above 50\% for subsequent periods. We believe that the
+results obtained with these two methods can be explained by a high consumption
+of energy and we will check this assumption in the next subsection.
+
+Concerning DiLCO-8, DiLCO-16, and DiLCO-32, these methods seem to be more
+efficient than DESK and GAF, since they can provide the same level of coverage
+(except in the first periods where DESK and GAF slightly outperform them) for a
+greater number of periods. In fact, when our protocol is applied with a large
+number of subregions (from 8 to 32~regions), it activates a restricted number of
+nodes, and thus allow to extend the network lifetime.