-\iffalse
-Casta{\~n}o et al.~\cite{castano2013column} proposed a multilevel approach based on column generation (CG) to extend the network lifetime with connectivity and coverage constraints. They are included two heuristic methods within the CG framework so as to accelerate the solution process.
-In \cite{diongue2013alarm}, diongue is proposed an energy Aware sLeep scheduling AlgoRithm for lifetime maximization in WSNs (ALARM) algorithm for coverage lifetime maximization in wireless sensor networks. ALARM is sensor node scheduling approach for lifetime maximization in WSNs in which it schedule redundant nodes according to the weibull distribution taking into consideration frequent nodes failure.
-Yu et al.~\cite{yu2013cwsc} presented a connected k-coverage working sets construction
-approach (CWSC) to maintain k-coverage and connectivity. This approach try to select the minimum number of connected sensor nodes that can provide k-coverage ($k \geq 1$).
-In~\cite{cheng2014achieving}, the authors are presented a unified sensing architecture for duty cycled sensor networks, called uSense, which comprises three ideas: Asymmetric Architecture, Generic Switching and Global Scheduling. The objective is to provide a flexible and efficient coverage in sensor networks.
-
-In~\cite{yang2013energy}, the authors are investigated full area coverage problem
-under the probabilistic sensing model in the sensor networks. %They are designed $\varepsilon-$full area coverage optimization (FCO) algorithm to select a subset of sensors to provide probabilistic area coverage dynamically so as to extend the network lifetime.
-In \cite{xu2001geography}, Xu et al. proposed a Geographical Adaptive Fidelity (GAF) algorithm, which uses geographic location information to divide the area of interest into fixed square grids. Within each grid, it keeps only one node staying awake to take the responsibility of sensing and communication.
-
-The main contributions of our DiLCO Protocol can be summarized as follows:
-(1) The distributed optimization over the subregions in the area of interest,
-(2) The distributed dynamic leader election at each round by each sensor node in the subregion,
-(3) The primary point coverage model to represent each sensor node in the network,
-(4) The activity scheduling based optimization on the subregion, which are based on the primary point coverage model to activate as less number as possible of sensor nodes to take the mission of the coverage in each subregion,
-(5) The improved energy consumption model.
-
-\fi
+\noindent In this section, we summarize some related works regarding the
+coverage problem and distinguish our DiLCO protocol from the works presented in
+the literature.
+
+The most discussed coverage problems in literature can be classified into three
+types \cite{li2013survey}: area coverage \cite{Misra} where every point inside
+an area is to be monitored, target coverage \cite{yang2014novel} where the main
+objective is to cover only a finite number of discrete points called targets,
+and barrier coverage \cite{Kumar:2005}\cite{kim2013maximum} to prevent intruders
+from entering into the region of interest. In \cite{Deng2012} authors transform
+the area coverage problem to the target coverage problem taking into account the
+intersection points among disks of sensors nodes or between disk of sensor nodes
+and boundaries. {\it In DiLCO protocol, the area coverage, i.e. the coverage of
+ every point in the sensing region, is transformed to the coverage of a
+ fraction of points called primary points. }
+
+The major approach to extend network lifetime while preserving coverage is to
+divide/organize the sensors into a suitable number of set covers (disjoint or
+non-disjoint), where each set completely covers a region of interest, and to
+activate these set covers successively. The network activity can be planned in
+advance and scheduled for the entire network lifetime or organized in periods,
+and the set of active sensor nodes is decided at the beginning of each period
+\cite{ling2009energy}. Active node selection is determined based on the problem
+requirements (e.g. area monitoring, connectivity, power efficiency). For
+instance, Jaggi et al. \cite{jaggi2006} address the problem of maximizing
+network lifetime by dividing sensors into the maximum number of disjoint subsets
+such that each subset can ensure both coverage and connectivity. A greedy
+algorithm is applied once to solve this problem and the computed sets are
+activated in succession to achieve the desired network lifetime. Vu
+\cite{chin2007}, Padmatvathy et al. \cite{pc10}, propose algorithms working in a
+periodic fashion where a cover set is computed at the beginning of each period.
+{\it Motivated by these works, DiLCO protocol works in periods, where each
+ period contains a preliminary phase for information exchange and decisions,
+ followed by a sensing phase where one cover set is in charge of the sensing
+ task.}
+
+Various approaches, including centralized, or distributed algorithms, have been
+proposed to extend the network lifetime. In distributed
+algorithms~\cite{yangnovel,ChinhVu,qu2013distributed}, information is
+disseminated throughout the network and sensors decide cooperatively by
+communicating with their neighbors which of them will remain in sleep mode for a
+certain period of time. The centralized
+algorithms~\cite{cardei2005improving,zorbas2010solving,pujari2011high} always
+provide nearly or close to optimal solution since the algorithm has global view
+of the whole network. But such a method has the disadvantage of requiring high
+communication costs, since the node (located at the base station) making the
+decision needs information from all the sensor nodes in the area and the amount
+of information can be huge. {\it In order to be suitable for large-scale
+ network, in the DiLCO protocol, the area coverage is divided into several
+ smaller subregions, and in each one, a node called the leader is in charge for
+ selecting the active sensors for the current period.}
+
+% MODIF - BEGIN
+\textcolor{blue}{ Our approach to select the leader node in a subregion is quite
+ different from cluster head selection methods used in LEACH
+ \cite{DBLP:conf/hicss/HeinzelmanCB00} or its variants
+ \cite{ijcses11}. Contrary to LEACH, the division of the area of interest is
+ supposed to be performed before the leader election. Moreover, we assume that
+ the sensors are deployed almost uniformly and with high density over the area
+ of interest, such that the division is fixed and regular. As in LEACH, our
+ protocol works in round fashion. In each round, during the pre-sensing phase,
+ nodes make autonomous decisions. In LEACH, each sensor elects itself to be a
+ cluster head, and each non-cluster head will determine its cluster for the
+ round. In our protocol, nodes in the same subregion select their leader. In
+ both protocols, the amount of remaining energy in each node is taken into
+ account to promote the nodes that have the most energy to become leader.
+ Contrary to the LEACH protocol where all sensors will be active during the
+ sensing-phase, our protocol allows to deactivate a subset of sensors through
+ an optimization process which reduces significantly the energy consumption.}
+% MODIF - END
+
+A large variety of coverage scheduling algorithms has been developed. Many of
+the existing algorithms, dealing with the maximization of the number of cover
+sets, are heuristics. These heuristics involve the construction of a cover set
+by including in priority the sensor nodes which cover critical targets, that is
+to say targets that are covered by the smallest number of sensors
+\cite{berman04,zorbas2010solving}. Other approaches are based on mathematical
+programming formulations~\cite{cardei2005energy,5714480,pujari2011high,Yang2014}
+and dedicated techniques (solving with a branch-and-bound algorithms available
+in optimization solver). The problem is formulated as an optimization problem
+(maximization of the lifetime or number of cover sets) under target coverage and
+energy constraints. Column generation techniques, well-known and widely
+practiced techniques for solving linear programs with too many variables, have
+also been
+used~\cite{castano2013column,rossi2012exact,deschinkel2012column}. {\it In DiLCO
+ protocol, each leader, in each subregion, solves an integer program with a
+ double objective consisting in minimizing the overcoverage and limiting the
+ undercoverage. This program is inspired from the work of \cite{pedraza2006}
+ where the objective is to maximize the number of cover sets.}