%\title{Authors' Instructions \subtitle{Preparation of Camera-Ready Contributions to SCITEPRESS Proceedings} }
-\title{Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}
+\title{Distributed Lifetime Coverage Optimization Protocol \\
+ in Wireless Sensor Networks}
\author{Ali Kadhum Idrees$^{a,b}$, Karine Deschinkel$^{a}$,\\ Michel Salomon$^{a}$, and Rapha\"el Couturier$^{a}$\\
$^{a}$FEMTO-ST Institute, UMR 6174 CNRS, \\ University Bourgogne Franche-Comt\'e, Belfort, France\\
\label{sec:introduction}
\noindent
-Energy efficiency is a crucial issue in wireless sensor networks since sensory
+Energy efficiency is a crucial issue in wireless sensor networks since sensory
consumption, in order to maximize the network lifetime, represents the major
difficulty when designing WSNs. As a consequence, one of the scientific research
challenges in WSNs, which has been addressed by a large amount of literature
during the last few years, is the design of energy efficient approaches for
-coverage and connectivity~\cite{conti2014mobile}. Coverage reflects how well a
+coverage and connectivity~\cite{conti2014mobile}. Coverage reflects how well a
sensor field is monitored. On the one hand we want to monitor the area of
-interest in the most efficient way~\cite{Nayak04}. On the other hand we want to
-use as little energy as possible. Sensor nodes are battery-powered with no
-means of recharging or replacing, usually due to environmental (hostile or
-unpractical environments) or cost reasons. Therefore, it is desired that the
-WSNs are deployed with high densities so as to exploit the overlapping sensing
-regions of some sensor nodes to save energy by turning off some of them during
-the sensing phase to prolong the network lifetime. \textcolor{blue}{A WSN can use various types of sensors such as \cite{ref17,ref19}: thermal, seismic, magnetic, visual, infrared, acoustic, and radar. These sensors are capable of observing different physical conditions such as: temperature, humidity, pressure, speed, direction, movement, light, soil makeup, noise levels, presence or absence of certain kinds of objects, and mechanical stress levels on attached objects. Consequently, there is a wide range of WSN applications such as~\cite{ref22}: health-care, environment, agriculture, public safety, military, transportation systems, and industry applications.}
+interest in the most efficient way~\cite{Nayak04}, \textcolor{blue}{which means
+ that we want to maintain the best coverage as long as possible}. On the other
+hand we want to use as little energy as possible. Sensor nodes are
+battery-powered with no means of recharging or replacing, usually due to
+environmental (hostile or unpractical environments) or cost reasons. Therefore,
+it is desired that the WSNs are deployed with high densities so as to exploit
+the overlapping sensing regions of some sensor nodes to save energy by turning
+off some of them during the sensing phase to prolong the network
+lifetime. \textcolor{blue}{A WSN can use various types of sensors such as
+ \cite{ref17,ref19}: thermal, seismic, magnetic, visual, infrared, acoustic,
+ and radar. These sensors are capable of observing different physical
+ conditions such as: temperature, humidity, pressure, speed, direction,
+ movement, light, soil makeup, noise levels, presence or absence of certain
+ kinds of objects, and mechanical stress levels on attached objects.
+ Consequently, there is a wide range of WSN applications such as~\cite{ref22}:
+ health-care, environment, agriculture, public safety, military, transportation
+ systems, and industry applications.}
In this paper we design a protocol that focuses on the area coverage problem
with the objective of maximizing the network lifetime. Our proposition, the
paper we made more realistic simulations by taking into account the
characteristics of a Medusa II sensor ~\cite{raghunathan2002energy} to measure
the energy consumption and the computation time. We have implemented two other
-existing \textcolor{blue}{and distributed approaches}(DESK ~\cite{ChinhVu}, and GAF ~\cite{xu2001geography}) in order to compare their performances
-with our approach. We also focus on performance analysis based on the number of
-subregions.
+existing \textcolor{blue}{and distributed approaches} (DESK ~\cite{ChinhVu}, and
+GAF ~\cite{xu2001geography}) in order to compare their performances with our
+approach. We also focus on performance analysis based on the number of
+subregions.
% MODIF - END
The remainder of the paper continues with Section~\ref{sec:Literature Review}
\end{itemize}
%\end{enumerate}
-An outline of the protocol implementation is given by Algorithm~\ref{alg:DiLCO}
+An outline of the protocol implementation is given by Algorithm~\ref{alg:DiLCO}
which describes the execution of a period by a node (denoted by $s_j$ for a
-sensor node indexed by $j$). At the beginning a node checks whether it has
-enough energy to stay active during the next sensing phase. If yes, it exchanges
-information with all the other nodes belonging to the same subregion: it
-collects from each node its position coordinates, remaining energy ($RE_j$), ID,
-and the number of one-hop neighbors still alive. Once the first phase is
-completed, the nodes of a subregion choose a leader to take the decision based
-on the following criteria with decreasing importance: larger number of
-neighbors, larger remaining energy, and then in case of equality, larger index.
-After that, if the sensor node is leader, it will execute the integer program
-algorithm (see Section~\ref{cp}) which provides a set of sensors planned to be
-active in the next sensing phase. As leader, it will send an Active-Sleep packet
-to each sensor in the same subregion to indicate it if it has to be active or
-not. Alternately, if the sensor is not the leader, it will wait for the
-Active-Sleep packet to know its state for the coming sensing phase.
-
+sensor node indexed by $j$). At the beginning a node checks whether it has
+enough energy \textcolor{blue}{(its energy should be greater than a fixed
+ treshold $E_{th}$)} to stay active during the next sensing phase. If yes, it
+exchanges information with all the other nodes belonging to the same subregion:
+it collects from each node its position coordinates, remaining energy ($RE_j$),
+ID, and the number of one-hop neighbors still alive. \textcolor{blue}{INFO
+ packet contains two parts: header and data payload. The sensor ID is included
+ in the header, where the header size is 8 bits. The data part includes
+ position coordinates (64 bits), remaining energy (32 bits), and the number of
+ one-hop live neighbors (8 bits). Therefore the size of the INFO packet is 112
+ bits.} Once the first phase is completed, the nodes of a subregion choose a
+leader to take the decision based on the following criteria with decreasing
+importance: larger number of neighbors, larger remaining energy, and then in
+case of equality, larger index. After that, if the sensor node is leader, it
+will solve an integer program (see Section~\ref{cp}). \textcolor{blue}{This
+ integer program contains boolean variables $X_j$ where ($X_j=1$) means that
+ sensor $j$ will be active in the next sensing phase. Only sensors with enough
+ remaining energy are involved in the integer program ($J$ is the set of all
+ sensors involved). As the leader consumes energy (computation energy is
+ denoted by $E^{comp}$) to solve the optimization problem, it will be included
+ in the integer program only if it has enough energy to achieve the computation
+ and to stay alive during the next sensing phase, that is to say if $RE_j >
+ E^{comp}+E_{th}$. Once the optimization problem is solved, each leader will
+ send an ActiveSleep packet to each sensor in the same subregion to indicate it
+ if it has to be active or not. Otherwise, if the sensor is not the leader, it
+ will wait for the ActiveSleep packet to know its state for the coming sensing
+ phase.}
+%which provides a set of sensors planned to be
+%active in the next sensing phase.
\begin{algorithm}[h!]
The objective function consists in minimizing the undercoverage and the overcoverage of the area as suggested in \cite{pedraza2006}.
The area coverage problem is expressed as the coverage of a fraction of points called primary points.
Details on the choice and the number of primary points can be found in \cite{idrees2014coverage}. The set of primary points is denoted by $P$
-and the set of sensors by $J$. As we consider a boolean disk coverage model, we use the boolean indicator $\alpha_{jp}$ which is equal to 1 if the primary point $p$ is in the sensing range of the sensor $j$. The binary variable $X_j$ represents the activation or not of the sensor $j$. So we can express the number of active sensors that cover the primary point $p$ by $\sum_{j \in J} \alpha_{jp} * X_{j}$. We deduce the overcoverage denoted by $\Theta_p$ of the primary point $p$ :
+and the set of alive sensors by $J$. As we consider a boolean disk coverage model, we use the boolean indicator $\alpha_{jp}$ which is equal to 1 if the primary point $p$ is in the sensing range of the sensor $j$. The binary variable $X_j$ represents the activation or not of the sensor $j$. So we can express the number of active sensors that cover the primary point $p$ by $\sum_{j \in J} \alpha_{jp} * X_{j}$. We deduce the overcoverage denoted by $\Theta_p$ of the primary point $p$ :
\begin{equation}
\Theta_{p} = \left \{
\begin{array}{l l}
\end{array}
\right.
\end{equation}
-The objective function is a weighted sum of overcoverage and undercoverage. The goal is to limit the overcoverage in order to activate a minimal number of sensors while simultaneously preventing undercoverage. Both weights $w_\theta$ and $w_U$ must be carefully chosen in
-order to guarantee that the maximum number of points are covered during each
-period.
+The objective function is a weighted sum of overcoverage and undercoverage. The goal is to limit the overcoverage in order to activate a minimal number of sensors while simultaneously preventing undercoverage. \textcolor{blue}{ By
+ choosing $w_{U}$ much larger than $w_{\theta}$, the coverage of a
+ maximum of primary points is ensured. Then for the same number of covered
+ primary points, the solution with a minimal number of active sensors is
+ preferred. }
+%Both weights $w_\theta$ and $w_U$ must be carefully chosen in
+%order to guarantee that the maximum number of points are covered during each
+%period.
% MODIF - END