]> AND Private Git Repository - Sensornets15.git/blobdiff - Example.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
o
[Sensornets15.git] / Example.tex
index c30cff51112364dea3d5a5c685cef7ee903e0bec..3b522661430b3a17e87f6845d1e45241ea42fa74 100644 (file)
@@ -293,19 +293,21 @@ and each sensor node will have five possible status in the network:
 An outline of the  protocol implementation is given by Algorithm~\ref{alg:DiLCO}
 which describes  the execution of  a period  by a node  (denoted by $s_j$  for a
 sensor  node indexed by  $j$). At  the beginning  a node  checks whether  it has
-enough energy to stay active during the next sensing phase. If yes, it exchanges
+enough energy \textcolor{blue}{(its energy should be greater than a fixed treshold $E_{th}$)} to stay active during the next sensing phase. If yes, it exchanges
 information  with  all the  other  nodes belonging  to  the  same subregion:  it
 collects from each node its position coordinates, remaining energy ($RE_j$), ID,
-and  the number  of  one-hop neighbors  still  alive. Once  the  first phase  is
+and  the number  of  one-hop neighbors  still  alive. \textcolor{blue}{INFO packet contains two parts: header and data payload. The sensor ID is included in the header, where the header size is 8 bits. The data part includes position coordinates (64 bits), remaining energy (32 bits), and the number of one-hop live neighbors (8 bits). Therefore the size of the INFO packet is 112 bits.} Once  the  first phase  is
 completed, the nodes  of a subregion choose a leader to  take the decision based
 on  the  following  criteria   with  decreasing  importance:  larger  number  of
 neighbors, larger remaining energy, and  then in case of equality, larger index.
-After that,  if the sensor node is  leader, it will execute  the integer program
-algorithm (see Section~\ref{cp})  which provides a set of  sensors planned to be
-active in the next sensing phase. As leader, it will send an Active-Sleep packet
+After that,  if the sensor node is  leader, it will solve  an integer program 
+(see Section~\ref{cp}). \textcolor{blue}{This integer program contains boolean variables $X_j$  where ($X_j=1$) means that sensor $j$ will be active in the next sensing phase. Only sensors with enough remaining energy are involved in the integer program ($J$ is the set of all sensors involved). As the leader consumes energy (computation energy, denoted by $E^{comp}$) to solve the optimization problem, it will be included in the integer program only if it has enough energy to achieve the computation and to stay alive during the next sensing phase, that is to say if $RE_j > E^{comp}+E_{th}$. Once the optimization problem is solved, each leader will send an Active-Sleep packet
 to each sensor  in the same subregion to  indicate it if it has to  be active or
-not.  Alternately, if  the  sensor  is not  the  leader, it  will  wait for  the
-Active-Sleep packet to know its state for the coming sensing phase.
+not. Otherwise, if  the  sensor  is not  the  leader, it  will  wait for  the
+Active-Sleep packet to know its state for the coming sensing phase.}
+%which provides a set of  sensors planned to be
+%active in the next sensing phase.
+
 
 
 \begin{algorithm}[h!]                
@@ -354,7 +356,7 @@ We formulate the coverage optimization problem with an integer program.
 The objective function consists in minimizing the undercoverage and the overcoverage of the area as suggested in \cite{pedraza2006}. 
 The area coverage problem is expressed as the coverage of a fraction of points called primary points. 
 Details on the choice and the number of primary points can be found in \cite{idrees2014coverage}. The set of primary points is denoted by $P$
-and the set of sensors by $J$. As we consider a boolean disk coverage model, we use the boolean indicator $\alpha_{jp}$ which is equal to 1 if the primary point $p$ is in the sensing range of the sensor $j$. The binary variable $X_j$ represents the activation or not of the sensor $j$. So we can express the number of  active sensors  that cover  the primary  point $p$ by $\sum_{j \in J} \alpha_{jp} * X_{j}$. We deduce the overcoverage denoted by $\Theta_p$ of the primary point $p$ :
+and the set of alive sensors by $J$. As we consider a boolean disk coverage model, we use the boolean indicator $\alpha_{jp}$ which is equal to 1 if the primary point $p$ is in the sensing range of the sensor $j$. The binary variable $X_j$ represents the activation or not of the sensor $j$. So we can express the number of  active sensors  that cover  the primary  point $p$ by $\sum_{j \in J} \alpha_{jp} * X_{j}$. We deduce the overcoverage denoted by $\Theta_p$ of the primary point $p$ :
 \begin{equation}
  \Theta_{p} = \left \{ 
 \begin{array}{l l}
@@ -398,9 +400,14 @@ X_{j} \in \{0,1\}, &\forall j \in J
 \end{array}
 \right.
 \end{equation}
-The objective function is a weighted sum of overcoverage and undercoverage. The goal is to limit the overcoverage in order to activate a minimal number of sensors while simultaneously preventing undercoverage. Both  weights $w_\theta$  and $w_U$ must  be carefully  chosen in
-order to  guarantee that the  maximum number of  points are covered  during each
-period.
+The objective function is a weighted sum of overcoverage and undercoverage. The goal is to limit the overcoverage in order to activate a minimal number of sensors while simultaneously preventing undercoverage.  \textcolor{blue}{ By
+    choosing  $w_{U}$ much  larger than $w_{\theta}$,  the coverage  of a
+    maximum of  primary points  is ensured.  Then for the  same number  of covered
+    primary points,  the solution  with a  minimal number  of active  sensors is
+    preferred. }
+%Both  weights $w_\theta$  and $w_U$ must  be carefully  chosen in
+%order to  guarantee that the  maximum number of  points are covered  during each
+%period.
 % MODIF - END