X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/Sensornets15.git/blobdiff_plain/580cdb46c36444138f980cce874e98bde7a3a14f..30623c88a2804ea8abf07dd5b15eeacdcd39a33d:/Example.tex diff --git a/Example.tex b/Example.tex index ab41cfc..cef7ad1 100644 --- a/Example.tex +++ b/Example.tex @@ -28,14 +28,14 @@ \title{Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks} -\author{Ali Kadhum Idrees, Karine Deschinkel,\\ Michel Salomon, and Rapha\"el Couturier\\ -%\affiliation{ -FEMTO-ST Institute, UMR 6174 CNRS, University of Franche-Comt\'e,\\ - Belfort, France\\ -%} -%\affiliation{\sup{2}Department of Computing, Main University, MySecondTown, MyCountry} +\author{Ali Kadhum Idrees$^{a,b}$, Karine Deschinkel$^{a}$,\\ Michel Salomon$^{a}$, and Rapha\"el Couturier$^{a}$\\ +$^{a}$FEMTO-ST Institute, UMR 6174 CNRS, \\ University Bourgogne Franche-Comt\'e, Belfort, France\\ +$^{b}${\em{Department of Computer Science, University of Babylon, Babylon, Iraq}}\\ email: ali.idness@edu.univ-fcomte.fr,\\ $\lbrace$karine.deschinkel, michel.salomon, raphael.couturier$\rbrace$@univ-fcomte.fr} -%\email{\{f\_author, s\_author\}@ips.xyz.edu, t\_author@dc.mu.edu} + +%\author{Ali Kadhum Idrees$^{a,b}$, Karine Deschinkel$^{a}$,\\ Michel Salomon$^{a}$, and Rapha\"el Couturier $^{a}$ \\ +%$^{a}${\em{FEMTO-ST Institute, UMR 6174 CNRS, University Bourgogne Franche-Comt\'e,\\ Belfort, France}} \\ +%$^{b}${\em{Department of Computer Science, University of Babylon, Babylon, Iraq}} } \begin{document} \maketitle @@ -91,11 +91,11 @@ means of recharging or replacing, usually due to environmental (hostile or unpractical environments) or cost reasons. Therefore, it is desired that the WSNs are deployed with high densities so as to exploit the overlapping sensing regions of some sensor nodes to save energy by turning off some of them during -the sensing phase to prolong the network lifetime. +the sensing phase to prolong the network lifetime. \textcolor{blue}{A WSN can use various types of sensors such as \cite{ref17,ref19}: thermal, seismic, magnetic, visual, infrared, acoustic, and radar. These sensors are capable of observing different physical conditions such as: temperature, humidity, pressure, speed, direction, movement, light, soil makeup, noise levels, presence or absence of certain kinds of objects, and mechanical stress levels on attached objects. Consequently, a wide range of WSN applications such as~\cite{ref22}: health-care, environment, agriculture, public safety, military, transportation systems, and industry applications.} In this paper we design a protocol that focuses on the area coverage problem with the objective of maximizing the network lifetime. Our proposition, the -Distributed Lifetime Coverage Optimization (DILCO) protocol, maintains the +Distributed Lifetime Coverage Optimization (DiLCO) protocol, maintains the coverage and improves the lifetime in WSNs. The area of interest is first divided into subregions using a divide-and-conquer algorithm and an activity scheduling for sensor nodes is then planned by the elected leader in each @@ -257,8 +257,7 @@ As shown in Figure~\ref{fig2}, the proposed DiLCO protocol is a periodic protocol where each period is decomposed into 4~phases: Information Exchange, Leader Election, Decision, and Sensing. For each period there will be exactly one cover set in charge of the sensing task. A periodic scheduling is -interesting because it enhances the robustness of the network against node -failures. First, a node that has not enough energy to complete a period, or +interesting because it enhances the robustness of the network against node failures. \textcolor{blue}{Many WSN applications have communication requirements that are periodic and known previously such as collecting temperature statistics at regular intervals. This periodic nature can be used to provide a regular schedule to sensor nodes and thus avoid a sensor failure. If the period time increases, the reliability and energy consumption are decreased and vice versa}. First, a node that has not enough energy to complete a period, or which fails before the decision is taken, will be excluded from the scheduling process. Second, if a node fails later, whereas it was supposed to sense the region of interest, it will only affect the quality of the coverage until the