- sensor network. As a first step we partition the area of interest into
- subregions using a classical divide-and-conquer method. Our DiLCO protocol is
- then distributed on the sensor nodes in each subregion in a second step. To
- fulfill our objective, the proposed protocol combines two effective
- techniques: a leader election in each subregion, followed by an
- optimization-based node activity scheduling performed by each elected leader.
- This two-step process takes place periodically, in order to choose a small set
- of nodes remaining active for sensing during a time slot. Each set is built
- to ensure coverage at a low energy cost, allowing to optimize the network
- lifetime. More precisely, a period consists of four phases: (i)~Information
- Exchange, (ii)~Leader Election, (iii)~Decision, and (iv)~Sensing. The
- decision process, which results in an activity scheduling vector, is carried
- out by a leader node through the solving of an integer program. In comparison
- with some other protocols, the simulations done using the discrete event
- simulator OMNeT++ show that our approach is able to increase the WSN lifetime
- and provides improved coverage performance. }
+ sensor network. First, we partition the area of interest into subregions using
+ a classical divide-and-conquer method. Our DiLCO protocol is then distributed
+ on the sensor nodes in each subregion in a second step. To fulfill our
+ objective, the proposed protocol combines two effective techniques: a leader
+ election in each subregion, followed by an optimization-based node activity
+ scheduling performed by each elected leader. This two-step process takes
+ place periodically, in order to choose a small set of nodes remaining active
+ for sensing during a time slot. Each set is built to ensure coverage at a low
+ energy cost, allowing to optimize the network lifetime. More precisely, a
+ period consists of four phases: (i)~Information Exchange, (ii)~Leader
+ Election, (iii)~Decision, and (iv)~Sensing. The decision process, which
+ results in an activity scheduling vector, is carried out by a leader node
+ through the solving of an integer program. In comparison with some other
+ protocols, the simulations done using the discrete event simulator OMNeT++
+ show that our approach is able to increase the WSN lifetime and provides
+ improved coverage performance. }